

Sequence Patterns Mining with Generating unit data

Centre for Maintenance Optimization and Reliability Engineering (C-MORE)

Objective

2

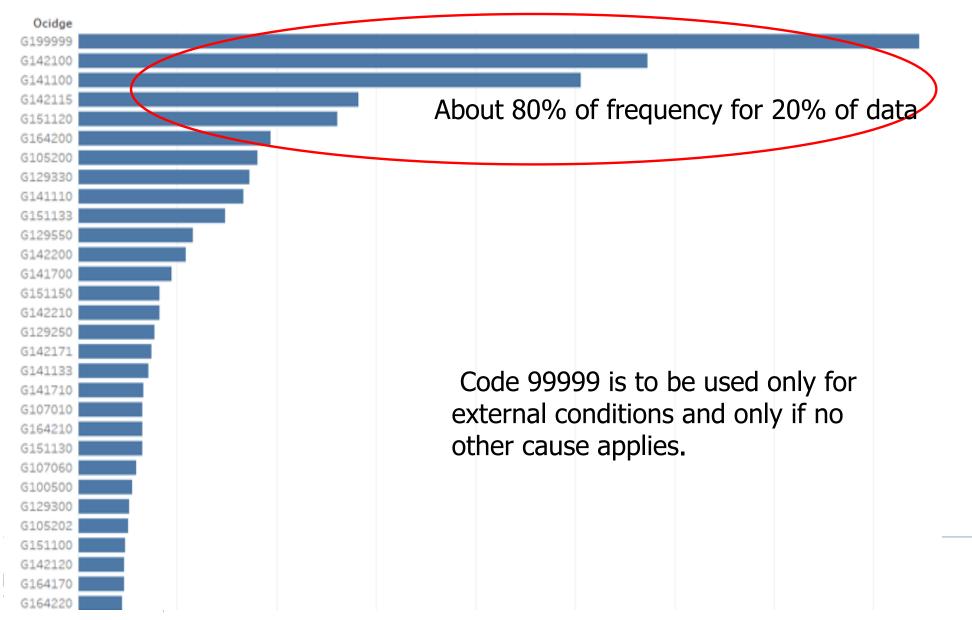
• There are some huge **data** produced through the **maintenance** of hydroelectric and fossil generating units.

UnitEvent GDID	StateCode	ForcedOutageTy	p SynchronousConden	CommonMod	e OCIDGE	Amplifica	Amplificat	Auxiliary	EodIndica	OutageTy	Comments	StartDateTime	FinishDateTime
15811437 HGU0719	21	1	1 NULL	1	G105200	NULL	NULL	NULL	NULL	NULL	load rejection	6/20/2017	6/20/2017
15811438 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		6/20/2017	6/22/2017
15811439 HGU0719	21	:	1 NULL	1	G105200	NULL	NULL	NULL	NULL	NULL	line trip cause	6/22/2017	6/24/2017
15811440 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		6/24/2017	6/24/2017
15811441 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		6/24/2017	7/9/2017
15811442 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		7/9/2017	7/9/2017
15811443 HGU0719	24	NULL	NULL	NULL	G129620	NULL	NULL	NULL	NULL	NULL	Penstock drain	7/9/2017	7/13/2017
15811444 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		7/13/2017	8/10/2017
15811445 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		8/10/2017	8/10/2017
15811446 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		8/10/2017	8/19/2017
15811447 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		8/19/2017	8/19/2017
15811448 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		8/19/2017	9/2/2017
15811449 HGU0719	24	NULL	NULL	NULL	G129620	NULL	NULL	NULL	NULL	NULL	Install Penstor	9/2/2017	9/12/2017
15811450 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/12/2017	9/16/2017
15811451 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/16/2017
15811452 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/20/2017
15811453 HGU0719	24	NULL	NULL	NULL	G142260	NULL	NULL	NULL	NULL	NULL	AVR Inspection	9/20/2017	9/20/2017
15811454 HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	9/20/2017
15811455 HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	12/31/2017
15812121 HGU0693	21		1 NULL	NULL	G142171	NULL	NULL	NULL	NULL	F	Unit remains o	1/1/2017	12/31/2017
15812125 HGU0682	22	NULL	NULL	NULL	G141100	NULL	NULL	NULL	NULL	M	Closed By Year	1/1/2017	12/31/2017
15812126 HGU0689	21	:	1 NULL	NULL	G142171	NULL	NULL	NULL	NULL	NULL	Unit remains o	1/1/2017	12/31/2017

Objective

3

- **Can Predict** the future behavior and future events of generating units and their components?
- Can **understand** the system health better?
- In this presentation:
 - Introduce ideas on applying predictive and descriptive analytics of Machine Learning for maintenance practices of generating units.


Case study

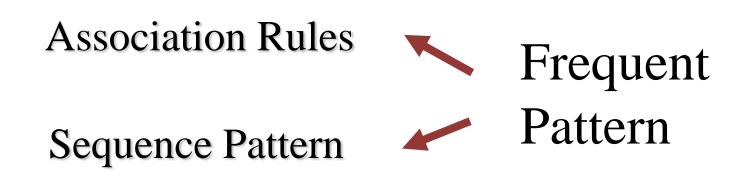
4

We have **continuous records** of the operating and outage data of each unit. (2013-2017)

			N		/	\frown								
UnitEvent		StateCode		yp SynchronousConde			Amplific	at	OCIDO	SE cod	les we	re develor	ped from the	ishDateTime
15811437		21		1 NULL		I G105200	NULL		••••					6/20/2017
15811438			NULL	NULL	NULL	NULL	NULL	_	Systen	n Clas	sificati	on Index (SCI) used to	6/22/2017
15811439		21		1 NULL	1	1 G105200	NULL		Cyston		Smouth			6/24/2017
158114	State	Code	2						idontify		nmont	evetom	and	6/24/2017
158114	dontif	ioc th	o ototo o	f tha unit du	uring the				luentiny	/ equi	pmem	i, <mark>systems</mark>	s, anu	7/9/2017
				of the unit du	anng me									7/9/2017
	ndica	ted tir	me interv	al					conditi	ons.				7/13/2017
158114	Foi	nad (Dutage (2	21)										8/10/2017
158114			•	,				NOLL	NOLL	NOLL	NOLL		0/10/2017	8/10/2017
158114	Ma	intena	ance Out	tage (24)				NULL	NULL	NULL	NULL		8/10/2017	8/19/2017
158114				0 ()				NULL	NULL	NULL	NULL		8/19/2017	8/19/2017
158114	Pia	inneu	Outage	(25)				NULL	NULL	NULL	NULL		8/19/2017	9/2/2017
158114		_						NULL	NULL	NULL	NULL	Install Penstor	9/2/2017	9/12/2017
15811450	HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/12/2017	9/16/2017
15811451	HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/16/2017
15811452	HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/20/2017
15811453	HGU0719	24	NULL	NULL	NULL	G142260	NULL	NULL	NULL	NULL	NULL	AVR Inspection	9/20/2017	9/20/2017
15811454	HGU0719	14	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	9/20/2017
15811455	HGU0719	11	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	12/31/2017
15812121	HGU0693	21		1 NULL	NULL	G142171	NULL	NULL	NULL	NULL	F	Unit remains c	1/1/2017	12/31/2017
15812125	HGU0682	22	NULL	NULL	NULL	G141100	NULL	NULL	NULL	NULL	M	Closed By Year	1/1/2017	12/31/2017
15812126	HGU0689	21		1 NULL	NULL	G142171	NULL	NULL	NULL	NULL	NULL	Unit remains c	1/1/2017	12/31/2017

OCIDGE: Outage Component Codes

Problem Definition


Is there any relationship among Outage

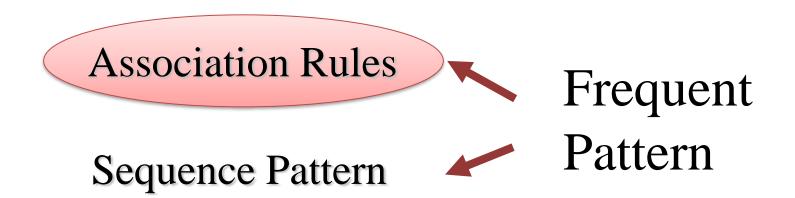
Component Codes with more frequently?

Frequent pattern

7

What Is Frequent Pattern Analysis?

• Frequent pattern: a pattern (a set of items, subsequences, etc.) that occurs **frequently** in a data set.

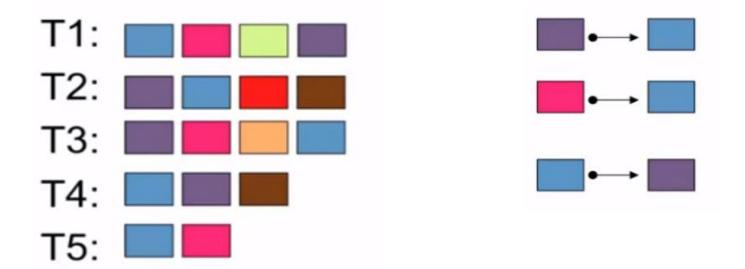

• Motivation: Finding inherent rules in data

For example:

8

- What products were often purchased **together**?
- What are the **subsequent purchases** after buying a PC?

Frequent pattern



Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important **Data Mining** model studied extensively by the database and data mining community.
- Initially used for Market Basket Analysis to find how items purchased by customers are related. (frequent pattern)

Support & Confidence

11

Support: 4/5; Conf: 1 Support: 3/5; Conf: 1 Support: 4/5; Conf: 4/5

support, *s*, probability that a transaction contains X and Y

confidence, *c*, conditional probability that a transaction having X also contains *Y*

Association rules algorithms

- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (ECLAT, CHARM, ...)

Approaches and Data preparation

Consider only these state codes:

- Forced Outage (21) or Maintenance Outage (24) to a Planned Outage (25)
 Delete some OCIDGE
- 99999

13

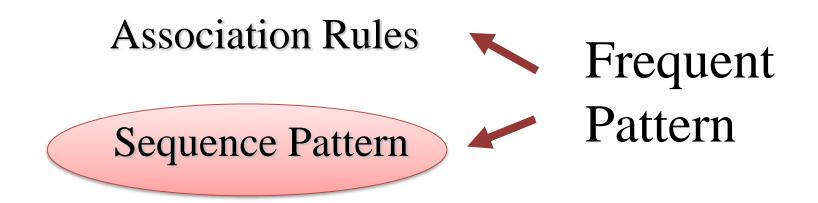
• 42100(Generator)

Used Appriori algorithm

- Number of rules =67
- Maximum number of antecedents: 5
- Minimum antecedent support (%): 20.0
- Minimum rule confidence (%): 70.0

Generator And Auxiliaries →Generator Power Transformers (c=71.5%)

Circuit Breakers - Generator Voltage \rightarrow Generator Power Transformers (c=80%)



Output

- (Excitation) \rightarrow Generator And Auxiliaries (c=74%)
- (Excitation) \rightarrow Generator Power Transformers (c=71%)
- Generator And Auxiliaries \rightarrow Generator Power Transformers (c=71.5%)
- Circuit Breakers Generator Voltage \rightarrow Generator Power Transformers (c=80%)
- (Circuit Breakers Generator Voltage) and (Generator Power Transformers) \rightarrow (Brushes And Brush Rigging) (c=72%)
- (Headgates) \rightarrow Brushes And Brush Rigging (c=73%)

Frequent pattern

Sequence Databases

17

- A sequence database consists of ordered elements or events
- Transaction databases vs. sequence databases

 TID
 itemsets

 10
 a, b, d

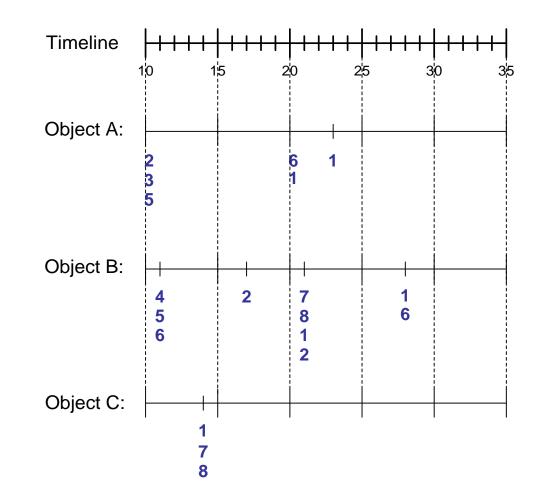
 20
 a, c, d

 30
 a, d, e

 40
 b, e, f

A transaction database

A sequence database


SID	sequences
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

Sequence Data

Sequence Database:

Object	Timestamp	Events
А	10	2, 3, 5
А	20	6, 1
А	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

18

Sequential Pattern Mining:

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup (minimum support)*
- Task:
 - Find all subsequences with support ≥ minsup

Studies on Sequential Pattern Mining

- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & Agrawal [EDBT'96])
- Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.KDD'00; Pei, et al. [ICDE'01])
- Vertical format-based mining: **SPADE** (Zaki [Machine Leanining'00])
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim [VLDB'99]; Pei, Han, Wang [CIKM'02])
- Mining closed sequential patterns: CloSpan (Yan, Han & Afshar [SDM'03])

Approaches and Data preparation

Consider only these state codes:

- Forced Outage (21) or Maintenance Outage (24) to a Planned Outage (25)
 Delete some OCIDGE
- 99999
- 42100(Generator)

Number of Rules: 443 Number of Valid Transactions: 476 Minimum Support: 21.218% Maximum Support: 98.739% Minimum Confidence: 60.366% Maximum Confidence: 99.099%

22

(Antecedent) \rightarrow (Consequent)

(Brushes And Brush Rigging) and (Circuit Breakers - Generator Voltage) \rightarrow Brushes And Brush Rigging (c=78%) (Brushes And Brush Rigging) and (Generator And Auxiliaries) \rightarrow Brushes And Brush Rigging (c=70%) (Brushes And Brush Rigging) and (Turbines) \rightarrow Brushes And Brush Rigging(c=74%) (Headgates) \rightarrow Brushes And Brush Rigging(c=61.9%) (Brushes And Brush Rigging) and (Generator Power Transformers) \rightarrow Generator Power Transformers(c=73.9%)

(Generator Power Transformers) \rightarrow Generator Power Transformers(c=66.9%) (Brushes And Brush Rigging) \rightarrow Generator Power Transformers(c=61.3%) (Brushes And Brush Rigging) and (Maintenance Outage) \rightarrow Generator Power Transformers(c=61.3%) (Generator And Auxiliaries) and (Generator Power Transformers) \rightarrow Generator Power Transformers (c=64.8) (Circuit Breakers - Generator Voltage) \rightarrow Generator Power Transformers (c=68.3) (Turbines) \rightarrow Generator Power Transformers (c=58.3) (Transmission Limitations) \rightarrow (Transmission Limitations) (c=62.4)

23

(Antecedent) \rightarrow (Consequent)

(Brushes And Brush Rigging) and (Circuit Breakers - Generator Voltage) → Brushes And Brush Rigging (c=78%)

(Generator And Auxiliaries) and (Generator Power Transformers) → Generator Power Transformers (c=64.8)

(Antecedent) \rightarrow (Consequent) (Antecedent) \rightarrow (Forced Outage)

(Brushes And Brush Rigging) and (Circuit Breakers - Generator Voltage) → Forced Outage (c=95%) (Maintenance Outage) and (Bus Duct, Bus, Cable) → Forced Outage (c=89 %)

Output

25

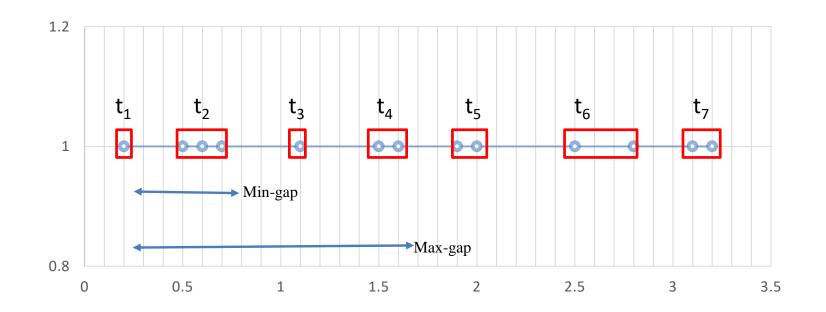
(Antecedent) \rightarrow (Consequent) (Antecedent) \rightarrow (Forced Outage)

(Brushes And Brush Rigging) and (Circuit Breakers - Generator Voltage) \rightarrow Forced Outage (c=95%) (Generator And Auxiliaries) and (Generator And Auxiliaries) \rightarrow Forced Outage (c=93.6%) (Cooling Water Systems) and (Maintenance Outage) \rightarrow Forced Outage (c=93.3%) (Maintenance Outage) and (Turbines) \rightarrow Forced Outage (c=93.2%) (Governor System) and (Maintenance Outage) \rightarrow Forced Outage (c=92%) (Generator Power Transformers) and (Forced Outage) \rightarrow Forced Outage (c=92%) (Generator Power Transformers) and (Maintenance Outage) \rightarrow Forced Outage (c=88.9%)

(Maintenance Outage) and (Bus Duct, Bus, Cable) \rightarrow Forced Outage (c=89 %)

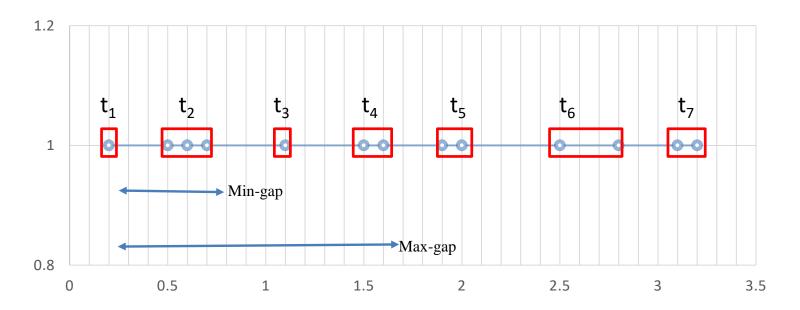
Time Gap Problem

Are all sequence patterns interesting?


Time Gap Constraint in sequential pattern mining

- There are some challenges associated with this method, one of them is **Time Gap** constrain.
- In particular, when two events occur with a moderately long time gap, they cannot be considered as being part of the same sequence.

Time Gap Constraint in sequential pattern mining


 One of the important concern in Sequential pattern mining is the constraints of minimum and maximum gap between two consecutive events.

Constraints in sequential pattern mining

- A desired (time) gap between events in the discovered patterns is specified as a constraint:
- min gap \leq gap \leq max gap

Data sequence	Subsequence	Contained?
<{a,b} {c,d,e} {f,g} {h,i} {j}>	$< \{e\} \ \{i\} >$	Yes
$< \{a\} \{b\} \{c\} \{d\} \{e\} >$	< {a} {e} >	
<{a} {b,c} {d,e} {e,f}>	$< \{b\} \{d\} \{g\} >$	
$< \{a,b\} \{c\} \{d,e\} \{f,g\} \{h,i\} $ $\{j,k\} >$	< {a,b} {k} >	

Data sequence	Subsequence	Contained?
<{a,b} {c,d,e} {f,g} {h,i} {j}>	< {e} {i} >	Yes
$< \{a\} \{b\} \{c\} \{d\} \{e\} >$	< {a} {e} >	No
<{a} {b,c} {d,e} {e,f}>	$< \{b\} \{d\} \{g\} >$	
$< \{a,b\} \{c\} \{d,e\} \{f,g\} \{h,i\} $ $\{j,k\} >$	< {a,b} {k} >	

Data sequence	Subsequence	Contained?
<{a,b} {c,d,e} {f,g} {h,i} {j}>	$< \{e\} \ \{i\} >$	Yes
$< \{a\} \{b\} \{c\} \{d\} \{e\} >$	$< \{a\} \{e\} >$	No
<{a} {b,c} {d,e} {e,f}>	$< \{b\} \{d\} \{g\} >$	Yes
$< \{a,b\} \{c\} \{d,e\} \{f,g\} \{h,i\} $ $\{j,k\} >$	< {a,b} {k} >	

Data sequence	Subsequence	Contained?
<{a,b} {c,d,e} {f,g} {h,i} {j}>	< {e} {i} >	Yes
$< \{a\} \{b\} \{c\} \{d\} \{e\} >$	< {a} {e} >	No
<{a} {b,c} {d,e} {e,f}>	$< \{b\} \{d\} \{g\} >$	Yes
$< \{a,b\} \{c\} \{d,e\} \{f,g\} \{h,i\} $ $\{j,k\} >$	< {a,b} {k} >	No

Mining Sequential Patterns with Timing Constraints

- Approach 1:
 - Mine sequential patterns without timing constraints
 - Post-process the discovered patterns
- Approach 2:
 - Modify algorithm to directly prune candidates that violate timing constraints

Approaches and Data preparation

Consider only these state codes:

Forced Outage (21) or Maintenance Outage (24) to a Planned Outage (25)
 Delete some OCIDGE

• 99999

•

• 42100(Generator)

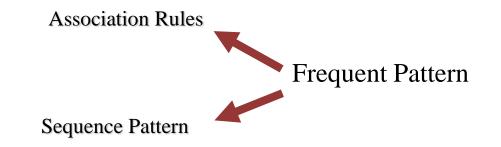
Max-GAP= 10 days Min-Gap=0 day Number of Rules:14 Number of Valid Transactions:476 Minimum Confidence:20.5 Maximum Confidence:100

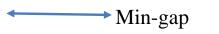
(Antecedent) \rightarrow (Consequent)

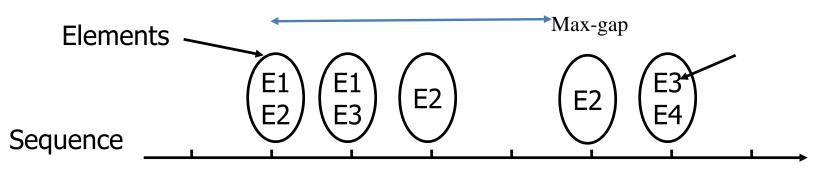
(Upstream Water Conditions) and (Upstream Water Conditions) \rightarrow Trash Racks And Followers

Upstream Water Conditions, Trash Racks And Followers

Exciter Transformer \rightarrow Site Environment, Storms, Floods


(Exciter Transformer) and (Site Environment, Storms, Floods) \rightarrow Site Environment, Storms, Floods


(Channels & Tunnels) \rightarrow (Channels & Tunnels)



Conclusion

JnitEvent	GDID	StateCode ForcedOuta	еТур	Synchrono	usConden Common	ode (DCIDGE	Amplifica	Amplifica	Auxiliary	EodIndica	OutageTy	Comments	StartDateTime	FinishDateTime
15811437	HGU0719	21	1	NULL	(1 (G105200	NULL	NULL	NULL	NULL	NULL	load rejection	6/20/2017	6/20/2017
15811438	HGU0719	11 NUL		NULL	NULL		NULL	NULL	NULL	NULL	NULL	NULL		6/20/2017	6/22/2017
15811439	HGU0719	21	1	NULL		10	3105200	NULL	NULL	NULL	NULL	NULL	line trip cause	6/22/2017	6/24/2017
15811440	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		6/24/2017	6/24/2017
15811441	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		6/24/2017	7/9/2017
15811442	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		7/9/2017	7/9/2017
15811443	HGU0719	24 NULL		NULL	NULL	0	G129620	NULL	NULL	NULL	NULL	NULL	Penstock drain	7/9/2017	7/13/2017
15811444	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		7/13/2017	8/10/2017
15811445	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		8/10/2017	8/10/2017
15811446	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		8/10/2017	8/19/201
15811447	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		8/19/2017	8/19/2017
15811448	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		8/19/2017	9/2/2017
15811449	HGU0719	24 NULL		NULL	NULL	0	G129620	NULL	NULL	NULL	NULL	NULL	Install Penstor	9/2/2017	9/12/201
15811450	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		9/12/2017	9/16/2017
15811451	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/16/2017
15811452	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		9/16/2017	9/20/2017
15811453	HGU0719	24 NULL		NULL	NULL	0	5142260	NULL	NULL	NULL	NULL	NULL	AVR Inspection	9/20/2017	9/20/2017
15811454	HGU0719	14 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	9/20/2017
15811455	HGU0719	11 NULL		NULL	NULL	1	NULL	NULL	NULL	NULL	NULL	NULL		9/20/2017	12/31/2017
15812121	HGU0693	21	1	NULL	NULL	0	G142171	NULL	NULL	NULL	NULL	F	Unit remains o	1/1/2017	12/31/2017
15812125	HGU0682	22 NULL		NULL	NULL	0	G141100	NULL	NULL	NULL	NULL	M	Closed By Year	1/1/2017	12/31/2017
15812126	HGU0689	21	1	NULL	NULL	0	G142171	NULL	NULL	NULL	NULL	NULL	Unit remains o	1/1/2017	12/31/2017

38

Thank you

