

Probabilistic Sequence-to-Sequence Learning

Table of Contents

Introduction

- Sequence-to-sequence learning
- Encoder-Decoder architecture
- Probabilistic inference of deep neural networks
- Deep kernel learning
- Attentive-GP
 - Attentive-GP architecture
 - Block-wise training algorithm
 - Numerical results
- Discussions
 - On-going research

Sequence-to-Sequence Learning

- Sequential models are widely used in natural language processing, computer vision, robotics control, finance and etc.
- Sequence-to-sequence learning models encode the input sequence into a hidden state via a deep neural network (DNN) and decode the output sequence via another DNN from the hidden state
- X can be an image, and Y can be a sentence to describe that image
- X can be control input (acceleration and direction) to an autonomous vehicle, and Y can be the state (position and speed) of the vehicle

Probabilistic Inference

- Stand DNNs are non-probabilistic
- It is import to quantify the uncertainty in output sequences
- Bayesian neural networks can be used to reason about model uncertainty (Gal & Ghahramani 2016)
- However, training Bayesian neural networks requires computation-intense Variational Inference or Markov Chain Monte Carlo

Deep Kernel Learning

Engineering

UNIVERSITY OF

- The extent of prior knowledge and uncertainty expressed in a parametric model (e.g. DNN) is relatively limited
- Gaussian processes (GP) provide richer representation of uncertainty (Rasmussen & Williams 2006)
- Deep kernel learning models based on combination of CNN, RNN and GP lead to superior results in probabilistic prediction (Al et al. 2017, Wilson et al. 2017)
- We introduce a GP layer into encoder-decoders for probabilistic sequence-tosequence learning

Highlights

- A new encoder-decoder architecture is developed for sequence-tosequence learning with predictive distribution
- The new method, termed Attentive-GP, is based on the combination of the Transformer architecture and GP regression
- We also develop a block-wise training algorithm to train the proposed method effectively

Attentive-GP

- The input sequence {x₁, ..., x_N} and past output sequence {y₁, ... y_{i-1}} are propagated through Transformer to get the most relevant feature for future output x_i = φ({x₁, ..., x_N}, {y₁, ... y_{i-1}})
- The feature is mapped to future output via GP regression layer

$$\mathbf{y}_i = f(\overline{\mathbf{x}}_i) + \epsilon_i$$

Encoder-Decoder Architecture

- Transformer an attention based encoder-decoder is the current state of the art for sequence-to-sequence learning
- The attention mechanism searches the most relevant information between input and output sequences
- Encoder-decoders with attention are capable of learning very long sequences with complicated structure

Gaussian Process Regression Layer

- GP is a non-parametric Bayesian model
- The posterior predictive distribution of test data can be derived from the joint distribution of training and test data

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}_* \end{bmatrix}, \begin{bmatrix} K_{X,X} + \sigma^2 I & K_{X,X_*} \\ K_{X_*,X} & K_{X_*,X_*} \end{bmatrix} \right)$$

• GP offers rich representation of uncertainty via kernelized covariance function (e.g. Squared Exponential kernel function)

$$\kappa\left(\bar{\mathbf{x}}_{i}, \bar{\mathbf{x}}_{j}\right) = \exp\left(-\frac{1}{2}\left(\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}}_{j}\right)^{\top} \Theta^{-2}\left(\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}}_{j}\right)\right)$$

Training

- Let W be parameters in Transformer
- Let $\boldsymbol{\theta}$ be the parameters in GP layer
- The model is trained by minimizing the negative log marginal likelihood w.r.t. to W and *θ* alternatingly
- The proposed training algorithm converges to a stationary point in theory and practice

Engineering

Algorithm 1

Initialize parameters θ_0^0 , W_0^0 for k = 1, 2, 3, ... do for $\tau = 1, 2, ... T$ do Update $W_{k-1}^{\tau-1}$ based on mini-batch data end for $W_k^0 \leftarrow W_{k-1}^T$ for $\tau = 1, 2, ... T$ do Update $\theta_{k-1}^{\tau-1}$ based on full-batch training data end for $\theta_k^0 \leftarrow \theta_{k-1}^T$ end for return θ , W

Numerical Results

- Robot Arm: Input sequence 21 connected robot arm joint position, speed and acceleration; Output sequence – robot arm joint torque
- **Suspension System**: Input sequence external disturbance to the vehicle; Output sequence relative position move
- Smart Grid: Input sequence temperature in 11 cities; Output sequence total electrical load on the grid

Root Mean Squared Error	Robot Arm	Suspension System	Smart Grid
RNN	4.924e-2	4.474e-2	9.714e-2
LSTM	4.704e-2	4.284e-2	8.624e-2
GRU	4.799e-2	4.176e-2	8.672e-2
RNN Enc-Dec	1.353e-2	1.903e-2	3.564e-2
Transformer	7.068e-3	1.495e-2	3.325e-2
Attentive-GP	6.573e-3	1.304e-2	3.242e-2

Numerical Results

Generated Output Sequence of Smart Grid

Generated Output Sequence of Robot Arm

Generated Output Sequence of Suspension System

On-going Research

- Reinforcement Learning
 - Value function approximation using deep kernel learning approaches
- Digital Twin
 - Virtual environment upon probabilistic sequence-to-sequence learning for RL agents

