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Executive summary 
Chi-Guhn Lee, C-MORE Director 

Introduction 
 
Despite Covid-19 and its ability to touch all our lives, C-MORE has continued to work with its 
collaborating companies. More of our visits are virtual, perhaps, but the outcomes are no less 
important. The following report summarizes work undertaken since the meeting in December 
2019. 
  
The C-MORE team 
 
Janet Lam, Assistant Director 
In the first half of 2020, Janet continued to work on various projects with all member companies 
through direct research, as well as student supervision. Together with Chi-Guhn, Janet submitted 
an abstract for a half-day workshop at the MainTrain conference held by PEMAC for this coming 
fall in St. John, New Brunswick. 
 
Andrew K. S. Jardine, Professor Emeritus 
Professor Jardine has continued to teach aspects of Engineering Asset Management at both the 
graduate and post-experience levels. He also participated in the annual International 
Maintenance Conference (IMC) in Florida. In addition, Andrew served as external examiner for a 
Master’s dissertation “An investigation into the benefits obtained by introducing Reliability 
Centred Maintenance in industrial organisations”, at the Faculty of Engineering, Built 
Environment and Information Technology, University of Pretoria, Republic of South Africa.        
 
Dragan Banjevic, C-MORE Consultant 
In his work with C-MORE, Dragan collaborated mostly with Janet on projects with consortium 
members, notably with TTC and DND and to some extent with MOD and Kinross Gold.  He also 
provided help in other projects with C-MORE students. 
 
Sharareh Taghipour, Ryerson, External Collaborator 
Sharareh is supervising/co-supervising two postdoctoral fellows and four PhD students; one 
of her PhD students and one MASc student recently completed their programs. Sharareh 
received an NSERC Discovery grant for “Decentralized Data Analytics and Optimization 
Methods for Physical Asset Management.” She also received funding for two collaborative 
projects with industry: NSERC CRD, “Developing methods for measuring social, economic, and 
environmental impacts of maintenance activities for physical assets,” with Fiix Inc.; NSERC 
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Alliance, “Real-time Optimization of Production Scheduling,” with Axiom Group. In addition, 
she received funding from the Ministry of Economic Development, Job Creation and Trade, to 
be matched with her John R. Evans Leaders Fund to purchase the “Industry 4.0 Smart Factory 
System.” The system will be used to develop predictive maintenance models and real-time 
optimization of production scheduling. Sharareh presented three papers at Reliability and 
Maintainability Symposium in January 2020 in Palm Springs. “Real-time optimization of 
maintenance and production scheduling for an Industry 4.0-based manufacturing system,” co-
authored with PhD student, Mageed Ghaleb, won First Place for the Thomas L. Fagan, Jr., 
RAMS Student Paper Award.  
 
Scott Sanner, University of Toronto 
Scott has been involved in a range of applied projects covering network and power grid security, 
predictive modelling for residential HVAC, prediction of high resource health users with the Dalla 
Lana School of Public Health, uses of social media in financial applications, a new project for 
traffic signal control in large urban traffic networks, and a number of projects involving 
recommender systems for eCommerce applications.  Scott recently published a paper on 
conversational recommender systems at the Web Conference (formerly WWW) 2020 and a 
journal article on optimal coordinated light rail and traffic signal control at IET Intelligent 
Transport Systems 
 
Fae Azhari, University of Toronto 
Fae’s research group now consists of 4 doctoral students, 3 MASc students, and 1 undergraduate 
student. Her projects include: complex naval asset management using sensor data, optimizing the 
fabrication and performance of multifunctional cementitious composites, fibre optic sensors for 
vibration monitoring, sensing system for gait analysis, bridge scour monitoring, condition-based 
maintenance of bridges, and compression creep behaviour of lead-free solder alloys. Her students 
Niloofar, Fredric, and Raymond presented their work at IWSHM 2019 at Stanford. Fae has been 
meeting with various people in the industry regarding research opportunities. Her lab was 
recently relocated, and she is in the process of obtaining more equipment. 
 
Ali Zuashkiani, Director of Educational Programs 
Ali has been active in providing consulting services to various industries such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially busy working 
with a major utility company (Marafiq) to improve their Operation and Maintenance business 
processes and procedures. Ali has also been working with Don Barry and Steve Sinkoff to develop 
CMORE’s 5-day comprehensive spare parts management program. 
 
Somayeh Alizadeh, Visiting Professor 
Somayeh is an Associate Professor in the Industrial Engineering faculty at Khaje Nasir Toosi 
University in Iran. She joined C-MORE as a visiting scholar in July. Since her arrival, Somayeh 
has been researching Association Rule Mining and Sequence Pattern Mining. She has used 
Sequence Pattern Mining algorithms on CEA data produced through the maintenance of 
hydroelectric generating units. The patterns’ relevance to maintenance activities, especially 
sequenced activities, have been extracted using Sequence Pattern Mining algorithms. These 
patterns reduce downtime by determining the occurrence of the next maintenance activity or next 
component outage. The method helps to predict the future events of generating units and the next 
outage. There is a concern about a time gap among discovered events in patterns. For example, 
the sequence of two events (outages) with a one-month gap cannot be accepted as an interesting 
sequence. Therefore, she has focused on the time constraint problem in Sequence Pattern Mining. 
She is looking at Sequential Pattern Mining algorithms which could be able to consider the time 
gap problem. 



4 
 

 
C-MORE students and postdoctoral fellows 
We have students at all levels working with us – from undergraduate to doctoral. C-MORE 
students have been extremely busy over the past six months, with many working on projects 
specifically related to Consortium members’ concerns. Three students will be presenting at the 
June meeting: Arun Shanmugam, Frank Fu, and Peter Gomez. For more information on student 
research activities, see the section “Overall Project Direction.” 
 
C-MORE activities with consortium members  
 
Defence Science and Technology Laboratory (DSTL)  
We continued progress on a long-term procurement project; we looked at the effect of a limited 
budget in the success of a project, along with leveraging the projects already in progress. Peter 
Gomez, an MEng student, began work on exploring the maintenance taxonomy project first 
proposed at the December 2019 meeting. Both projects will be presented at the June meeting. 
 
Department of National Defence (DND)  
The DND team and C-MORE have been working diligently on the propulsion diesel engine health 
analysis project. Having identified four different failure modes, we proposed an age-based policy 
based on cost ratios of preventive versus corrective maintenance activities. As the costs are not 
available, we proposed a range of acceptable values based on existing common ratios. 
 
Kinross Gold Corporation  
Kinross proposed two projects for the first half of 2020. The first was a continuation of the KPI 
project. We have found a weak positive relationship between % cost from PMs and availability. 
Further work is being done for predictive analysis. This project will be presented at the June 
meeting. The second project was proving the business case for machine learning in maintenance, 
to show the amount of savings that could be had by using machine learning. 
 
Toronto Transit Commission (TTC)  
Since December, work has continued on the TTC reinspection project to incorporate track 
information into the prediction of the criticality of reinspections. 
 
C-MORE educational programs  
 
Andrew Jardine has continued to act as an unofficial C-MORE ambassador by teaching courses 
at the graduate and post-experience levels. The pandemic has changed the style of delivery; two 
courses were recently presented at the University of the West Indies, Trinidad, virtually by Zoom. 
Ali Zuashkiani is continuing to work with Don Barry and Steve Sinkoff to develop CMORE’s 5-day 
comprehensive spare parts management program. 
 
Conclusion 
 
The semi-annual meeting is always a good opportunity for all of us to take stock and see exactly 
what we have accomplished in the past six months. I am gratified to see we are moving forward, 
and our work has continued relevance. At the very least, we can take pride in our adaptability as 
a research organization. I wish everyone good health as we move forward into the second half of 
2020. Stay safe. 
 
Chi-Guhn Lee 
June 2020 
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Visits and interactions with consortium members 
and others 
January 2020 – June 2020 

January 7, 2020 Teck  
Janet had a call with Gordon Kovaloff at the Trail location to give a tutorial on using SMS, spares 
management software. 
 
January 10, 2020 Kinross  
Janet and Dragan visited Emilio, Brian, and Theresa at the Kinross Toronto office to discuss 
strategies for this year. Two projects were proposed and refined. 
 
January 17, 2020 
C-MORE met with industry professionals Jim Reyes Picknell, Jim Jarvie, and Richard Beer to 
discuss possibilities in modelling reliability and maintenance using process control data, rather 
than maintenance data. 
 
January 21, 2020 Kinross 
Janet had a call with Theresa to discuss the details on some of the definitions in the KPI project. 
 
February 5, 2020 DND 
Janet and Arun had a call with Kulan, Ian, Jamie, and Nicolle on progress on the propulsion diesel 
engine project.  
 
February 6, 2020 FAO 
Chi-Guhn and Janet had a call with Edward Crummey from the Financial Accountability Office to 
discuss a potential project on predicting the maintenance costs of infrastructure under the 
jurisdiction of the Province of Ontario. 
 
February 13, 2020 FAO 
Chi-Guhn and Janet met with Edward Crummey and David West from FAO as follow up. 
 
February 14, 2020 Kinross 
Janet and two MEng students Syed and Aakash had a call with Emilio, Brian, Theresa, and Ethan 
from Kinross to discuss the objectives of the machine learning business case project. 
 
February 24-28, 2020  
Andrew participated in the PAM program, Ghana Institution of Engineering, Accra, Ghana. 
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February 27, 2020 Kinross 
Janet and two MEng students, Syed and Aakash, had a call with Brian, Theresa, and Ethan from 
Kinross to discuss the challenges of getting sensor data from then haul trucks for the machine 
learning business case project. 
 
March 3, 2020 DND  
Janet and Arun had a call with Kulan, Jamie, and Nicolle on progress on the propulsion diesel 
engine project.  
 
March 11, 2020 Maple Leaf Foods  
Chi-Guhn, Janet, and Ali had a meeting with Faye Cooper, Mike Schultz and Mike Liu to discuss 
potential collaborations. 
 
March 24, 2020 DND   
Janet and Arun had a call with Kulan and Jamie on progress on the propulsion diesel engine 
project.  
 
March 26, 2020 Maple Leaf Foods  
Chi-Guhn and Janet had a conference call with Faye Cooper, Mike Liu, and Pat van de Bospoort 
to discuss C-MORE’s main areas of research and potential areas of collaboration.  
 
March 27, 2020 Kinross 
Janet and Dragan had a conference call with Emilio, Brian, Gustavo, Theresa, and Ethan to 
present the progress on the KPI project. 
 
March 28, 29, 2020  
Andrew virtually presented a graduate course, “Maintenance Analysis and Optimization,” for the 
Department of Mechanical & Manufacturing Engineering, University of The West Indies, 
Trinidad via Zoom. 
 
April 2, 2020 CEA   
Chi-Guhn and Janet had a call with Dan Gent from CEA to discuss a potential project on a data 
quality assessment project. 
 
April 18, 19, 2020  
Andrew virtually presented a graduate course “Maintenance Analysis and Optimization” for 
Department of Mechanical & Manufacturing Engineering, University of The West Indies, 
Trinidad via Zoom. 
 
April 23, 2020 DND   
Janet and Arun had a call with Kulan and Jamie on progress on the propulsion diesel engine 
project. 
 
May 6, 2020 TTC  
Chi-Guhn and Janet had a call with Luigi, Mostafa, Aleks, Tauqeer, Jennifer, and Hossein to 
discuss continued membership with C-MORE. 
 
May 7, 2020  
Chi-Guhn and Janet had a call with Professor Tamel El-Diraby to discuss potential projects with 
the Ministry of Infrastructure in costing the maintenance of Ontario’s infrastructure. 
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C-MORE leadership activities 

Chi-Guhn Lee, Director 
 
Chi-Guhn continued to lead C-MORE in research projects and industry partnerships throughout 
this term. He gave several talks on integrating machine learning technologies in the area of 
physical asset management. In particular, he gave a talk on the general introduction to artificial 
intelligence to government officials, diplomats and other association leaders as part of The Korean 
Embassy Speakers Series in Ottawa in December 2019. He is working steadily on developing 
relationships with various organizations to increase C-MORE's presence in the area of asset 
management in the face of emerging technologies.  
 
Janet Lam, Assistant Director 
 
In the first half of 2020, Janet continued to work on various projects with all member companies 
through direct research, as well as student supervision. Together with Chi-Guhn, Janet submitted 
an abstract for a half-day workshop at the MainTrain conference held by PEMAC for this coming 
fall in St. John, New Brunswick. 
 
Andrew K. S. Jardine, Professor Emeritus 
 
Professor Jardine has continued to teach aspects of Engineering Asset Management at both the 
graduate and post-experience levels. He also participated in the annual International 
Maintenance Conference (IMC) in Florida. In addition, Andrew served as external examiner for a 
Master’s dissertation “An investigation into the benefits obtained by introducing Reliability 
Centred Maintenance in industrial organisations”, at the Faculty of Engineering, Built 
Environment and Information Technology, University of Pretoria, Republic of South Africa.        
 
Dragan Banjevic, C-MORE Consultant 
 
In his work with C-MORE, Dragan collaborated mostly with Janet on projects with consortium 
members, notably with TTC and DND and to some extent with MOD and Kinross Gold.  He also 
provided help in other projects with C-MORE students. 
 
Sharareh Taghipour, Ryerson University, External Collaborator 
 
Sharareh is supervising/co-supervising two postdoctoral fellows and four PhD students; one 
of her PhD students and one MASc student recently completed their programs. Sharareh 
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received an NSERC Discovery grant for “Decentralized Data Analytics and Optimization 
Methods for Physical Asset Management.” She also received funding for two collaborative 
projects with industry: NSERC CRD, “Developing methods for measuring social, economic, and 
environmental impacts of maintenance activities for physical assets,” with Fiix Inc.; NSERC 
Alliance, “Real-time Optimization of Production Scheduling,” with Axiom Group. In addition, 
she received funding from the Ministry of Economic Development, Job Creation and Trade, to 
be matched with her John R. Evans Leaders Fund to purchase the “Industry 4.0 Smart Factory 
System.” The system will be used to develop predictive maintenance models and real-time 
optimization of production scheduling. Sharareh presented three papers at Reliability and 
Maintainability Symposium in January 2020 in Palm Springs. “Real-time optimization of 
maintenance and production scheduling for an Industry 4.0-based manufacturing system,” co-
authored with PhD student, Mageed Ghaleb, won First Place for the Thomas L. Fagan, Jr., 
RAMS Student Paper Award.  
 
Scott Sanner, University of Toronto 
 
Scott has been involved in a range of applied projects covering network and power grid security, 
predictive modelling for residential HVAC, prediction of high resource health users with the Dalla 
Lana School of Public Health, uses of social media in financial applications, a new project for 
traffic signal control in large urban traffic networks, and a number of projects involving 
recommender systems for eCommerce applications.  Scott recently published a paper on 
conversational recommender systems at the Web Conference (formerly WWW) 2020 and a 
journal article on optimal coordinated light rail and traffic signal control at IET Intelligent 
Transport Systems. 
 
Fae Azhari, University of Toronto 
 
Fae’s research group now consists of 4 doctoral students, 3 MASc students, and 1 undergraduate 
student. Her projects include: complex naval asset management using sensor data, optimizing the 
fabrication and performance of multifunctional cementitious composites, fibre optic sensors for 
vibration monitoring, sensing system for gait analysis, bridge scour monitoring, condition-based 
maintenance of bridges, and compression creep behaviour of lead-free solder alloys. Her students 
Niloofar, Fredric, and Raymond presented their work at IWSHM 2019 at Stanford. Fae has been 
meeting with various people in the industry regarding research opportunities. Her lab was 
recently relocated, and she is in the process of obtaining more equipment. 
 
Jue Wang, Affiliate Professor 
 
For the first part of 2020, Jue continued his work in optimizing the operations of smart and 
connected products. One paper he co-authored was recently accepted for publication 
by Operations Research, the flagship journal of his field, and he just submitted a revision of 
another paper to Operations Research on the topic of quick fault diagnosis with sensors. A new 
paper about online fine-tuning is now under minor revision at Production & Operations 
Management.  
 
Ali Zuashkiani, Director of Educational Programs 
 
Ali has been active in providing consulting services to various industries such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially busy working 
with a major utility company (Marafiq) to improve their Operation and Maintenance business 
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processes and procedures. Ali has also been working with Don Barry and Steve Sinkoff to develop 
CMORE’s 5-day comprehensive spare parts management program. 
 
Somayeh Alizadeh, Visiting Professor 
 
Somayeh is an Associate Professor in the Industrial Engineering faculty at Khaje Nasir Toosi 
University in Iran. She joined C-MORE as a visiting scholar in July. Since her arrival, Somayeh 
has been researching Association Rule Mining and Sequence Pattern Mining. She has used 
Sequence Pattern Mining algorithms on CEA data produced through the maintenance of 
hydroelectric generating units. The patterns’ relevance to maintenance activities, especially 
sequenced activities, have been extracted using Sequence Pattern Mining algorithms. These 
patterns reduce downtime by determining the occurrence of the next maintenance activity or next 
component outage. The method helps to predict the future events of generating units and the next 
outage. There is a concern about a time gap among discovered events in patterns. For example, 
the sequence of two events (outages) with a one-month gap cannot be accepted as an interesting 
sequence. Therefore, she has focused on the time constraint problem in Sequence Pattern Mining. 
She is looking at Sequential Pattern Mining algorithms which could be able to consider the time 
gap problem. 
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Overall project direction 
Janet Lam, Assistant Director 

Goals and retrospectives 
 
This section highlights the some of the main achievements in C-MORE for the period January 
2020 – June 2020. As with everyone else, C-MORE’s activities have had to pivot in light of the 
COVID-19 crisis. In particular, some of the conferences were cancelled, leaving us to focus on 
member projects. 
 
C-MORE has entered into an agreement with LEORON to offer a virtual Physical Asset 
Management 2 course in July. The original in-person course offered through the School of 
continuing studies have been rescheduled. 

Activities 

Collaboration with companies and site visits 
This section gives details on progress in research conducted with consortium members 
 
Member Collaborations 

Defence Science and 
Technology Laboratory 

We continued progress on the long-term procurement project; we 
looked at the effect of a limited budget in the success of a project, 
along with leveraging the projects that are already in progress. 

Peter Gomez, an MEng student, began work on exploring the 
maintenance taxonomy project first proposed at the December 2019 
meeting. 

Both projects will be presented today. 

Department of National 
Defence 

The DND team and C-MORE have been working diligently on the 
propulsion diesel engine health analysis project. Having identified 
four different failure modes, an age-based policy was proposed based 
on cost ratios of preventive versus corrective maintenance activities. 
Since the costs are not available, a range of acceptable values were 
proposed based on existing common ratios. 
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Member Collaborations 

Kinross Kinross proposed two projects for the first half of 2020. The first was 
a continuation of the KPI project. We found a weak positive 
relationship between % cost from PMs and availability. Further work 
is being done for predictive analysis. This project will be presented 
today. The second project was proving the business case for machine 
learning in maintenance to show the savings that could be had by 
using machine learning. 

Toronto Transit 
Commission 

Work has continued on the TTC re-inspection project to incorporate 
track information into the prediction of the criticality of re-
inspections. 

 
 

Theoretical work 
This section on theoretical work is oriented toward students’ and postdoctoral fellows’ research 
topics. 
 

Name Activity 

Kuilin Chen, PhD 
student 

Kuilin completed his qualifying exam in November 2019. He 
completed the work of developing digital twins using hybrid models 
of Transformer and Gaussian Processes, termed Attentive-GP. An 
abstract on probabilistic sequence-to-sequence learning based 
digital twin was accepted for the Reliability Conference 2020.  In 
addition, he submitted the Attentive-GP paper to the Thirty-fourth 
Conference on Neural Information Processing Systems (NeurIPS), 
June 2020. Kuilin is working on Bayesian distributional 
reinforcement learning for efficient and risk-sensitive exploration.  

Jiacheng (Frank) Fu, 
MEng student 

Frank is working on the Kinross KPI project. The project started in 
January 2020 and involves determining whether an increase in 
planned maintenance time increases reliability/availability using 
KPI measures, as well as developing machine learning model(s) to 
predict reliability/availability in the future. In the past three months, 
Jiacheng has performed detailed exploratory data analysis on the 
dataset provided by Kinross Gold and organized by Dr.  Lam. This 
included investigating the meaning of the data, searching and 
visualizing the patterns and trends, calculating correlations and 
conducting T-tests to find the most suitable features for linear 
regression models. He then trained and implemented linear 
regression models to predict each target (i.e. availability, utilization, 
etc.) using techniques such as grid search for hyperparameter 
tuning. At the current stage, each model is being evaluated by using 
hypothesis testing on the root mean squared error of the outputs. 

Anmol Garg, MEng 
student 

Anmol is a 1st year MEng Student in Mechanical and Industrial 
Engineering. In the pursuit of a career in data analytics, he has taken 
introductory courses. Now, in a real-world setting, he is involved in 
a project under Professor Chi-Guhn Lee which deals with detecting 
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Name Activity 

banned items in baggage using a Convolutional Neural Network 
(CNN) which is meant to be employed in airport scanning systems. 

Michael Gimelfarb, 
PhD candidate 

Michael has continued his doctoral work on knowledge transfer in 
reinforcement learning using graph-structured data, Bayesian 
approaches and hierarchical RL. He is supervised by Scott Sanner 
and Chi-Guhn Lee. 

Peter Gomez, MEng 
student 

Peter began work on exploring the maintenance taxonomy project 
with DSTL. His work will be presented at the June meeting. 

Aakash Iyer, MEng 
student 

Aakash is a 2nd year graduate student pursuing a Master’s of 
Engineering in Mechanical and Industrial Engineering with a 
technical specialization in Data Analytics, and an emphasis on 
ELITE – Finance & Management major. His main project under the 
supervision of Professor Chi-Guhn Lee deals with object detection 
and classification for baggage security scanning along with the 
development of an early warning system for hazardous object 
detection. 

Scott Koshman, PhD 
student 

Scott has continued his doctoral research on equipment health 
monitoring for Halifax Class frigates. He is supervised by Professor 
Fae Azhari. 

Syed Hamdan Mustafa, 
MEng student 

Syed Hamdan is pursuing his Master’s of Engineering in Mechanical 
and Industrial Engineering with an emphasis in Data Analytics. He 
is working under the supervision of Dr. Chi-Guhn Lee on a project 
exploring a transfer learning approach to a security object detection 
scan task to be employed in airports. Starting in January 2020, he 
has also worked on the Kinross Machine Learning Business Case 
project which aims at optimizing the maintenance strategy of truck 
engines using predictive modelling. 

Seyedvahid Najafi, PhD 
student 

Vahid is a full-time PhD student who works on the maintenance 
modelling and optimization of multi-unit series systems. In his 
research, he is developing an opportunistic maintenance policy with 
general repair for a two-unit series system, in which the condition of 
one unit is monitored, and only the age information is available for 
the other unit. The problem is formulated in a semi-Markov decision 
process framework, and an algorithm is developed to find the 
optimal control limits and the long-run average cost per unit time. A 
paper entitled “An optimal maintenance policy for a two-unit series 
system with general repair” was accepted by IISE Annual Conference 
& Expo 2020, New Orleans, Louisiana, USA. He passed his 
qualifying exam in January 2020 and will be ready for his first 
annual progress review meeting in the beginning of 2021. 

Arun Shanmugam, 
MEng student 

Arun is an MEng student in Mechanical and Industrial Engineering. 
He has worked on the reliability modelling of propulsion diesel 
engines in Halifax Class frigates for the Department of National 
Defense (Navy) over the past eight months. Key activities include: 
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Name Activity 

construction of event history from maintenance data; failure mode 
statistical analysis; development of decision models to determine 
optimal preventive replacement age for each failure mode. 

Iris Shi and Runting 
Yang, Undergraduate 
students 

Iris and Runting are both undergraduate students who will be 
starting on a project focusing on the COVID-19 pandemic. More 
specifically, they are looking into the impact of the lockdowns on the 
daily activities of video websites and if, or under what specific 
conditions, a website’s policies (such as free membership) boost the 
profits. 

  

Jia Qi (Cherry) Xi and 
Juntian (Mia) Zhang,  
MEng students 

Cherry and Mia are both MEng Students in Department of 
Mechanical and Industrial Engineering. Their research project deals 
with the maintenance data from a hydroelectric power generator 
under CEA. By conducting data analysis and research on sequential 
pattern mining methodologies, they are aiming to identify 
maintenance patterns and sequential rules to support future 
maintenance decisions at the power plant. Major progress to date 
includes a survey on published algorithms and data explorations. 

Songci Xu, PhD student Songci started his first year PhD program in January 2020. He is 
working with the visiting PhD student, Bin Yang, and his research 
focuses on applying transfer learning to Intelligent Fault Diagnosis 
(IFD), one of the projects of LG. He is also working on the 
explanatory ability of deep domain adaptation to avoid the Negative 
Transfer; this will be part of his thesis. 

Yushi Wang, MEng 
student 

Yushi is an MEng student in Mechanical and Industrial Engineering 
working on the real asset procurement project of the generic real 
option problem under the swing option assumption using 
Reinforcement Learning. He is doing an investigation to perfect the 
formulation and solve it for reasonable numeric results. 

Bin Yang, Visiting PhD 
student 

Bin continues research on the applications of transfer learning to 
fault diagnosis of machines. In the past six months, he mainly 
worked on a project on partial transfer learning. This project focuses 
on the realistic assumption in engineering scenarios that the source 
domain contains sufficient diagnostic knowledge while the target 
domain just require partial. Bin has completed an article based on 
this work, which will be submitted to a journal in the field. 

Ruiqi Yang, MEng 
student 

Ruiqi Yang is a 2nd year graduate student pursing his Master’s of 
Engineering in Mechanical and Industrial Engineering. He is now 
working on the MEng project “Applied Markov decision process in 
real option valuation” with his teammates and under Professor Lee’s 
supervision. 

Yige Zhang, MEng 
student 

Yige is an MEng student who is working on a Real Option Pricing 
Project based on the UKMOD Project. Yige and his teammates are 
analysing the accessibility of the algorithm inspired by “Market self-
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Name Activity 

learning of signals, impact and optimal trading: invisible hand 
inference with free energy.” 

Zihan Zhang, MASc 
student 

During the past six months, Zihan has finished two courses (Markov 
Decision Process, Scientific Writing Course), continued a literature 
review in PHM application and proposed four project proposals: (a) 
hierarchical maintenance optimization considering replacement 
impact; (b) short-time-Fourier-transform-based fault diagnosis 
using Graph Convolution Network; (c) health-oriented group 
maintenance; and (d) prognosis management for rechargeable 
batteries integrating deep neural network and physical-stochastic 
processes. She will proceed with a battery project in summer session 
with undergraduates. She received a merit-based MIE Endowed 
Scholarship in the winter session and her two co-authored papers 
have been published in Reliability Engineering & Safety Systems 
and IEEE Transactions on Sustainable Energy. 

Avi Sokol, PhD student As a flex-time PhD student and a full-time Business Data Scientist 
and Inventory Specialist, Avi continues to research integration of 
Reinforcement Learning and Inventory Control to reduce waste in 
supply chains. In the past six months, Avi did a literature review on 
application of deep reinforcement learning in supply chains, reward 
function decomposition, and explainability & interpretability of the 
models to prepare for the qualifying exam scheduled for summer 
2020. 
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CEA data mining project progress report 
Jia Qi (Cherry) Xi, Juntian (Mia) Zhang 
 
 

Project overview 
 
Canadian Electricity Association (CEA) is a leading national electricity association in Canada 
founded in 1891. CEA provides value-added products and services to advance the strategic interest 
of the Canadian electricity industry. CEA currently uses an Equipment Reliability Information 
System (ERIS) to record continuous operating and outage data, along with timestamps.  
 
This project is to generate algorithms and codes to find patterns and rules regarding the outage 
events in a sequence and make appropriate operation and maintenance decisions in the future. 
The algorithm output should contain the probability of high-related event occurrence in a 
specified time interval.  
 
In the early stage of the project, we mainly focused on researching available algorithms and codes. 
We compared performance and efficiency of algorithms to find the most appropriate and efficient 
algorithms for this project and applied more new codes to provide algorithms with new functions 
and higher efficiency to fit better the requirement of CEA.  
 
Based on the datasets provided by CEA, data pre-processing is required to filter out noise and 
outliers. Among the many open-source libraries available to apply sequential pattern mining 
algorithms, the SPMF library was chosen as the basic coding tool for our case study. While it has 
a specific input format requirement, data are transformed into a sequential database with the 
required input format.  
 
Sequential pattern mining and sequential rule are the two main algorithm types used in this 
project to analyze datasets and discover frequent subsequences and rules among the transactions. 
The final outcome of the project will be a set of preventive maintenance policies based on the 
output of the selected data mining algorithms. 
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Basic concepts and algorithms 
 
Pattern mining key terms 
 
This section introduces some key terms about pattern mining and explains the definition of 
sequential pattern mining and sequential rule.  
 
Algorithms for sequential pattern mining 
 
There are five main types of algorithms for sequential pattern mining: horizontal database 
approach (Apriori, GSP), vertical database (SPADE, SPAM, CM-SPADE, CM-SPAM), pattern 
growth(PrefixSpan), closed sequential(CloSpan), constraint-based closed sequential(BIDE, 
Generalized Sequential Pattern Mining with Item Intervals), and hybrid(LASH) [1]. 
 
Algorithms for sequential rule mining 
 
Several algorithms have been proposed for sequential rule mining; they can be divided into two 
groups, with time constraints and without time constraints. The typical algorithm with time 
constraints is TRuleGrowth; ERMiner is a sequential rule mining algorithm without time 
constraints [2]. 
 
Algorithm comparison 
 
We have created a table comparing algorithms by their proposal year, category, availability for 
constraint, and big data support. 
 
Available code resources 
 
SPMF is an open-source data mining library written in Java, specialized in pattern mining (the 
discovery of patterns in data) [3]. 
 
MLlib is Apache Spark's scalable machine learning library usable in Java, Scala, Python and R. It 
offers high-quality algorithms and can be compiled on diverse platforms such as Hadoop, Apache 
Mesos [4]. 
 
Case study 
 
Data pre-processing 
 
The case study used the continuous operation and outage data of the hydroelectric and fossil 
generating units. Before implementing the pattern mining algorithms from the SPMF library, we 
conducted a series of procedures including data exploration, noise cleaning and data 
transformation to pre-process the raw data. Since the raw data only record a single item in each 
event, a key step in the pre-processing is the aggregation of multiple items within a chosen time-
window into a single sequential transaction. The resulting transaction database is transformed 
into the required format of the SPMF library.  
 
Algorithm implementation 
 
Algorithms from both sequential pattern mining and sequential rule mining are selected for 
implementation. We used TRuleGrowth and ERMiner to discover sequential rules, whereas 
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HirateYamana, CloSpan, and CMSpade are applied to identify sequential patterns. Among these 
selected algorithms, TRuleGrowth and HirateYamana consider time-related factors in which 
constraints such as window size and time interval can be enforced. For each algorithm, three 
scenarios with different input parameters and constraints are designed to obtain patterns or rules 
under various settings.  
 
Results and discussion 
 
We organized the results obtained for each scenario and algorithm in charts and compared the 
performance of algorithms through graphics. We also derived the output sequential rules and 
sequential patterns of forced outage into preventive maintenance policies, which are valuable 
references for operating decisions.  
 
Proposed model 
 
While sequential pattern mining algorithms have used support as the principal measure or 
constraint, this is too general for a complex problem. For our type of case study with many types 
of components, outage events with specific time-stamp, and data stretched over a long time span, 
support is not reflective as it can be affected by the size of the dataset and it does neglect the effect 
of time in the calculation. Therefore, enhanced support is proposed to take into account the time, 
which is a critical element in the pattern mining outcome leading towards a useful maintenance 
plan or policy.  In addition, a three-phase procedure is outlined as a modified implementation to 
obtain enhanced support: 
 
Phase 1 - Break the dataset down into subsets of periods according to a set time window. 
Phase 2 - Apply sequential pattern mining algorithms on each of the subsets. 
Phase 3 - Calculate the support and enhanced support for each discovered sequential pattern. 
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Maintenance modelling and optimization of series 
systems considering general repair 
Seyedvahid Najafi 
 

Introduction 
 
Modern manufacturing systems are composed of multiple components in which a high level of 
technology is applied. Machines wear out with age and usage, and if no appropriate plan is 
designed, unexpected failures can incur considerable costs. Failures of multi-unit systems can 
result in not only high maintenance costs but also industrial accidents. So, many companies try 
to apply appropriate maintenance policies to increase workplace safety and reduce maintenance 
costs. 
 
A failure occurs when a system is unable to perform a required function. When a system fails, 
corrective maintenance (CM) returns it to operation. However, preventive maintenance (PM) can 
be performed to reduce the risk of failure when the system is still operational. When a unit fails 
in a system with economic dependency between units, opportunistic maintenance (OM) can be 
performed to improve the condition of other operational units. 
 
Berg [1] applied a dynamic semi-Markov program to find an optimal policy for a two-unit system 
in which, opportunistic replacement is performed, if the age of the operational unit exceeds a 
control limit. Berrade et al. [2] considered interactions between the units of a two-unit system. 
 
Repair actions can be classified into three categories, based on the degree of rejuvenation: perfect 
repair, imperfect repair (i.e., general repair), and minimal repair. Perfect repair completely 
restores a system to statistically as-new condition. General repair improves the condition of a 
system to a state between as-new and as-old [3]. Minimal repair is performed to return a failed 
unit to the same operational condition just before failure (as-old) [4]. Kijima et al. [3] studied a 
repairable system that is periodically replaced and received general repair upon failures. Kijima 
[5] represented two models to consider the effect of general repair on virtual age. Model Ⅰ, 𝑉𝑉𝑛𝑛 =
𝑉𝑉𝑛𝑛−1 + 𝐴𝐴𝑛𝑛𝑋𝑋𝑛𝑛, assumes that each general repair reduces the deterioration incurred since the latest 
repair. In model Ⅱ, which is represented as 𝑉𝑉𝑛𝑛 = 𝐴𝐴𝑛𝑛(𝑉𝑉𝑛𝑛−1 + 𝑋𝑋𝑛𝑛), general repair reduces the 
deterioration of the system up to now, where 𝐴𝐴𝑛𝑛 ∈ [0,1] is a random variable showing the degree 
of nth repair. Extreme values 0 and 1 represent minimal and perfect repair, respectively. 
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The deterioration of a system is generally influenced by not only its age, but several factors 
referred to as covariates [6]. CM data can be utilized by a proportional hazards model (PHM), 
which takes into account both age and covariates and it is widely used to estimate the failure risk 
of units. Makis and Jardine [7] studied a system subjected to the PHM in which the values of a 
stochastic process 𝑍𝑍 (i.e., covariates) are known at discrete decision epochs. Optimality equations 
are derived, and the form of optimal replacement policies is examined. Jafari et al. [8] applied the 
SMDP to find an optimal opportunistic maintenance policy for a multi-unit system with two main 
units. CM data are used in a PHM to estimate the failure risk of unit 1, and age information is 
available for the other unit. More examples on the application of the PHM in CBM can be found 
in [9], [10] and [11]. 
 
System description 
 
The system consists of two units, the more expensive unit (unit 1) is subject to CBM, and the age 
information for the second unit is available. When one of the units fails, the whole system fails, 
and failure is self-announcing. The deterioration of unit 1 is described by the gamma process 
{𝑋𝑋𝑡𝑡|𝑡𝑡 ≥ 0}. A Weibull PHM distribution is applied to estimate the hazard rate of unit 1. 
 
To be able to formulate the problem in the SMDP framework, the joint age and deterioration 
process of unit 1, denoted by 𝑌𝑌𝑡𝑡 = (𝑡𝑡,𝑋𝑋𝑡𝑡), is required to be discretized. A matrix-based 
approximation method, which was developed by Brook and Evans [6], is applied to calculate the 
conditional reliability of unit 1 over its lifetime.  
 
Policy structure 
 
The system is inspected at equidistant epochs (𝛥𝛥, 2𝛥𝛥, … ,𝑁𝑁𝛥𝛥) and the hazard rate of unit 1 is 
calculated by Equation (1). Preventive maintenance (PM), corrective maintenance (CM) and 
opportunistic maintenance (OM) is performed on the system considering a hazard rate control 
limit 𝐿𝐿1 for unit 1 and an age-based control limit 𝐿𝐿2 for unit 2. If the age of the system reaches 𝑁𝑁, 
the whole system is replaced, otherwise, the following preventive actions are performed: 
 

• PM for unit 1: At inspection epochs, if the hazard rate of unit 1 is less than 𝐿𝐿1, no action is 
taken on unit 1; otherwise, general repair is performed. 

• PM for unit 2: If the age of unit 2 is less than 𝐿𝐿2, no action is taken on unit 2; otherwise, 
the unit is replaced. 
 

If one of the units fails, and the age of the system is 𝑁𝑁 − 1, the whole system is replaced; otherwise, 
the following CM actions are performed: 
 

• CM for unit 1: When unit 1 fails, if its hazard rate is less than 𝐿𝐿1, minimal repair returns it 
to operation; otherwise, general repair is performed. 

• CM for unit 2: When unit 2 fails, if its age is less than 𝐿𝐿2, minimal repair is performed on 
unit 2; otherwise, it is replaced. 

• OM for unit 1: When unit 2 fails, there is an opportunity to improve unit 1, and if unit 1 
hazard rate is less than 𝐿𝐿1, no action is taken; otherwise, general repair is performed on 
unit 1.  

• OM for unit 2: When unit 1 fails, if the age of unit 2 is less than 𝐿𝐿2, no action is taken on 
unit 2; otherwise, unit 2 is replaced. 
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State definition 
 
In this section, the required elements are defined to solve the maintenance problem in the SMDP 
framework. The state space of the whole system can be expressed as: 
 

 S = {(z, i, j, g, f)|z ∈ Ω, 0 ≤ 𝑖𝑖, j ≤ N, g ∈ {0,1},𝑓𝑓 ∈ {0,𝐹𝐹1,𝐹𝐹2}} (13) 

 
Unit 1 and unit 2 age are represented by 𝑖𝑖Δ and 𝑗𝑗Δ, and the maximum useful age of the system is 
𝑁𝑁. If general repair is performed on unit 1, then element 𝑔𝑔 equals 1, otherwise 0. The failure or 
operational status of the system is represented by the element 𝑓𝑓: if the system is operational, then 
𝑓𝑓 = 0, and 𝐹𝐹1 and 𝐹𝐹2 indicate the failure of unit 1 and unit 2, respectively. Actions (𝑎𝑎1,𝑎𝑎2) are 
performed on unit 1 and unit 2, respectively, where 𝑎𝑎1,𝑎𝑎2 ∈ 𝐴𝐴 = {0,1,2,3}, and actions consist of 
doing nothing (0) minimal repair (1), general repair (2), and replacement (3). If the deterioration 
of unit 1 is z, it will be reduced to max{0,(z- δ)} after general repair.  
 
Considering the first step of the policy-iteration algorithm, the following system of linear 
equations are solved to obtain the optimal long-run expected average cost per unit time 𝑔𝑔(𝐿𝐿1,𝐿𝐿2) 
and optimal control limits [9]: 
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where 𝑃𝑃𝑙𝑙,𝑚𝑚(𝑎𝑎1,𝑎𝑎2) is the probability of transition from the current state 𝑙𝑙 to next state 𝑚𝑚, when 
action (𝑎𝑎1,𝑎𝑎2) is performed. 𝜏𝜏𝑙𝑙(𝑎𝑎1,𝑎𝑎2) and 𝐶𝐶𝑙𝑙(𝑎𝑎1,𝑎𝑎2) represent the expected sojourn time and the 
expected cost of the system, respectively, given the action (𝑎𝑎1,𝑎𝑎2) is selected in the current state 
𝑙𝑙. 
 
Numerical example 
 
We considered a feed subsystem of a boring machine as unit 1 whose data was published in Duan 
et al. [7], and the positioning accuracy of the subsystem is described by a gamma process, which 
indicates its degradation. The shape parameter and the scale parameter of the process are 𝛼𝛼(𝑡𝑡) =
0.276𝑡𝑡 and 𝛽𝛽 = 4.86. The hazard rate of unit 1 is described by a Weibull PHM with the scale 
parameter 𝜆𝜆 = 85.42, the shape parameter 𝑘𝑘 = 4.63, and the covariate coefficient is 𝜃𝜃 = 0.281. 
Unit 2 failure time follows Weibull distribution with the scale and shape parameters 85.42 and 
4.63, respectively. Time dependent parameters are transformed from hours to days, and the 
maximum number of deterioration states is 𝐷𝐷 = 8. Inspection interval is Δ = 10 days, which has 
been partitioned into 10 intervals with the length of 𝑑𝑑 = 1 day. The whole system is replaced when 
its age reaches 𝑁𝑁Δ = 50 days.  
 
Different combinations of control limits 𝐿𝐿1and 𝐿𝐿2 are considered to find the optimal limits which 
minimizes the long-run expected average cost per unit time, and some results are presented in 
Table 1. As can be seen from the table, the proposed policy (policy Ⅰ) is compared with the policy 
Ⅱ whose structure is the same as policy Ⅰ except that instead of general repair, replacement is 
performed. The results show that policy Ⅰ outperforms policy Ⅱ, and considering the optimal 
hazard rate control limit 𝐿𝐿1∗ = 2.87E− 02 and the age control limit 𝐿𝐿2∗ = 5Δ results in the optimal 
long-run expected average cost rate 𝑔𝑔∗ (𝐿𝐿1∗,𝐿𝐿2∗) = $126.38. 
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Table 1. Long-run expected average cost per unit time under 
different control limits 

 
 Policy Ⅰ Policy Ⅱ Policy Ⅰ Policy Ⅱ Policy Ⅰ Policy Ⅱ 

                 𝐿𝐿1               
𝐿𝐿2 Δ Δ 3Δ 3Δ 5Δ 5Δ 

2.62E-05 $372.80 $529.96 $299.06 $451.52 $313.14 $437.45 
3.24E-04 $311.89 $357.20 $230.15 $268.98 $226.55 $290.23 
4.01E-03 $253.01 $266.11 $167.93 $170.50 $144.84 $209.08 
2.87E-02 $247.78 $248.16  $156.70 $157.11 $126.38 $129.60 
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Kinross KPI project progress report: linear 
regression  
Jiacheng Fu, MEng student 

Introduction 
 
In modern industry, as more human labour is replaced by machinery, maintenance starts to play 
an important role. Conducting regular maintenance can keep machines and equipment in good 
condition which can not only improve their efficiency of production but also reduces unnecessary 
costs due to failure. Thus, Kinross Gold, as one of the leading enterprises in the field of gold 
mining, proposed a project on investigating the pattern of maintenance time. The project was 
divided into two parts by objective. The first part aims to provide insights about the trend of 
truck/shovel availability with increasing planned maintenance time. It answers the questions 
such as does increasing planned maintenance time will increase availability of trucks and shovels. 
The second part of the project is to predict the availability using the given KPI measures as the 
inputs. Thus, this report aims to demonstrate the most recent progress of the project which uses 
linear regression model to reach the above project objectives.  
 
Methodology  
 
As mentioned in the previous section, the overall methodology uses linear regression model to 
explore the pattern between planned maintenance time and availability as well as making 
predictions. The entire process was done on Google Colab using Python programming language. 
The general idea is to build linear regression models between KPI measures(as features) and 
availability as well as other related variables(as the targets) to find which KPI measures have 
strong impacts on the targets by examining the coefficients of the linear model. In addition, the 
linear model with low percentage error can also be used for making predictions on the targets. 
The investigation was broken down into four steps: data cleaning, feature selection, linear model 
implementation and model evaluation. 
 
Data cleaning 
 
Data cleaning includes dropping null values, extracting and organizing relevant data. The purpose 
of this step is to create data frames and numpy arrays that contains KPI measures that will be 
used as features and variables that will be used as targets so that one can easily feed them into the 
linear algorithms later on. Thus, the KPI measures used as features (predictor variables) are: 
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● % of late PM (planned maintenance) 
● % proxy for planned 
● % of weekly schedule compliance 
● % cost from PMs 
● Cost 

 
As mentioned, availability is the research target for this project. However, it is still wise to explore 
the variables that are highly related to availability in order to draw useful insights. Therefore, here 
is a full list of target variables: 
 

● Availability 
● Utilization 
● Effective utilization (UofA) 
● Hours 
● Events (Evts) 
● Mean time between failure (MTBF) 

 
Feature selection 
 
To increase the model accuracy and reducing the computational costs, it is very important to 
choose the highly related features and abandoning the ones that have less contributions to the 
targets. The features were selected based on two criteria: the correlation coefficient and p values 
of slope generated from the f and t tests.  
 
So let’s first look at the correlation coefficients. The author examined the correlation between each 
pair of predictor variable and target variable. Correlation coefficient of each combination gives 
the information of the strength of the linear relationship between the variables. The threshold 
value of correlation coefficient was set to be 0.2. Thus, if the correlation coefficient is above 0.2, 
the predictor variable is linearly related to the target variable which indicates that the predictor 
variable can be used as the input of the linear regression model that predicts that particular target. 
Otherwise, the predictor variable should not be used since the relationship is not strong enough 
to be recognized as linear. Appendix I shows the correlation coefficients between targets and 
features with the ones that are above the threshold being highlighted. In addition, the correlation 
coefficients between features were calculated to find highly correlated features so the ones that 
were highly related to the features that were already selected as the inputs were dropped.  
 
The next assessment performed on the predictor variables is the hypothesis testing including both 
f and t-test. In order to do so, ordinary least square (OLS) models were first implemented to each 
target variables with the original five features. As the name suggests, the ordinary least square 
model is the linear model that chooses the parameters of a linear function of a set of explanatory 
variables by the principle of least squares which is minimizing the sum of the squares of the 
differences between the observed dependent variable in the given dataset and those predicted by 
the linear function.[1] Then, f-tests were performed on each model to see whether the OLS model 
for each target variable was statistically reliable. A t-test was performed on each model to see if 
each predictor variable used by the model had sufficient contribution to the results.  
 
The goal of the f-test is to evaluate the overall strength of the OLS model. It is calculated based on 
all of the model coefficients. Unlike the correlation coefficient, the f test aims tell the researcher 
about the magnitude of the linear model coefficients given that the relationship has already been 
identified as linear. Thus, the null hypothesis of the f-test is that all the model coefficients equal 
to zero whereas the alternative hypothesis is that at least one of the coefficients is a non-zero value. 

https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Dataset
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Thus, the f-test determines whether the proposed linear relationship between the response 
variable and the set of predictors is statistically reliable and can be useful when the research 
objective is either prediction or explanation. The significance level of f-test was set to be 0.1. So if 
the OLS model has a p value below the significance level, the linear model will be considered as 
inappropriate and it should be completely abandoned. 
 
The second hypothesis test was the t-test. Unlike the f-test, the t-test evaluates each individual 
regressor rather than the entire model. Simply speaking, the significance of each individual model 
coefficient is assessed. At first, each OLS model has 5 p-values corresponding to 5 features. So the 
null hypothesis here is that the individual coefficient inside the model is equal to zero and the 
alternative hypothesis says the opposite. As one can see, the goal of the t-test is to check whether 
certain feature has significant impact on the target variables based on its coefficient. The larger 
the coefficient, the more significant impact it has. The significance level for the t-test is the same 
as the f-test. For features with p value below the significance level, that feature can be considered 
as useless when predicting the target. In that case, we should drop that feature and rebuild the 
model for the next evaluation until all the features used in the model can reject the null hypothesis 
and that is exactly that the author did. In addition, every time the model was reconstructed with 
modified features, the f-test was performed again on the new model to ensure the model was still 
statistically reliable. 
 
After conducting both correlation coefficients calculation and hypothesis testing, features that 
passed both test were selected. Appendix II shows the selected features for each target variable. 
 
Model training and evaluation 
 
A more complicated linear regression named net elastic model, was implemented to each target 
variable after feature selection. Just like OLS model, the net elastic model uses a linear function 
of predictor variables to predict the target. However, during the calculation of model loss function, 
it includes the L1 and L2 penalties to reduce the variance of the results which prevents the model 
from overfitting data. Therefore, two hyperparameters were introduced into the model: 
regularization parameter and elastic net parameter. The former, ranges from 0 to 1, is the 
coefficient that controls  the overall strength of the L1-L2 penalty. With 0 being minimum and 1 
being maximum. The latter is the mixing ratio of L1-L2 penalty with 0 being pure L2 penalty and 
1 being pure L1 penalty.  
 
In order to find the best values for the 2 hyperparameters for the prediction of each target, 10 fold 
cross validation was applied. In each case, the data was first split into training and test sets by a 
ratio of 7:3. For the first 70%, which is the training data, it was broken down into 10 subsets. Nine 
of them were used for training the model with specified hyperparameters and the last one, also 
called the validation set was used for testing and calculating the mean squared error. This process 
was repeated for 10 times by choosing different validation set from the 10 subsets. The 10 fold 
cross validation tested each combination of hyperparameters which includes regularization 
parameter and elastic net parameter by implementing grid search. For each pair of 
hyperparameters, the average value of the mean squared errors collected from the 10 trials was 
calculated. The algorithm then picked the combination of hyperparameters which produced the 
lowest average mean squared error as the optimal solution of hyperparameters for the elastic net 
model. In the meantime, the model coefficients and intercepts were also returned as part of the 
results. During the entire process, the rest 30% of the data which was used as test set was 
completely untouched and unseen by the model. After training, the models were applied on the 
test data and they were evaluated based on the mean absolute percentage error calculated from 
the predictions and true values. 
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Results and discussion 
 
Table 1 shows the model results including all the model parameters, hyperparameters, and model 
mean absolute percentage error. Lamda refers to regularization parameter and L1 ratio refers to 
elastic net parameter.  
 
Table1. Final details and results from model 
 

Target 
Variables 

Final 
Selected 
Features 

Hyperparamete
rs 

Parameters Mean Absolute 
Percentage 
Error 

Availability %cost from 
PMs, cost 

Lamda = 0.1 
L1 Ratio = 0.05 

Coefficients = 
[0.0146,   -9.08 
X10^-7] 
Intercept = 0.8653 

8.34% 

Utilization(Util) %cost from 
PMs, cost  

Lamda = 0.05 
L1 Ratio = 0.05 

Coefficients = 
[0.0382, -6.6 X 
10^-7] 
Intercept = 0.678 

8.88% 

Effective 
Utilization(UofA) 

N/A N/A N/A N/A 

Hours % cost from 
PMs , cost 

Lamda = 0.8 
L1 Ratio = 0.05 

Coefficients = [-
5.72, 7.83 X 10^-
4] 
Intercept = 57.66 

189% 

Events (Evts) % of late PMs, 
% proxy for 
planned 

Lamda = 0.1 
L1 Ratio = 0.05 

Coefficients = [-
2.08, -2.09] 
Intercept = 16.64 

39.05% 

Mean Time 
Between Failure 
(MTBF) 

% of late PMs, 
% proxy for 
planned 

Lamda = 0.5 
L1 Ratio = 0.05 

Coefficients = 
[0.85, 1.51] 
Intercept = 43.57 

33.30% 

 
We can see that the errors for hours, events and mean time between failures are extremely high 
which implies that linear model may not be the best choices for them. One is even greater than 
100% which is insanely large. However, for availability and utilization, it is pretty pleasant to see 
that model errors are relatively lower which are below 10% which indicates that these two linear 
models are highly reliable. As a result, further discussion will be based on the results from these 
two models.  
 
So for the cases of availability and utilization, one can see that the coefficients of percentage cost 
from PMs are much higher than the other feature in the linear models which indicates its high 
importance. In addition, the coefficients of percentage cost from PMs are positive which suggests 



26 
 

that increasing percentage cost from planned maintenance will increase both availability and 
utilization. Consequently, the hypothesis is that increasing costs from planned maintenance will 
increase availability and utilization. In order to prove its validity, the author created some scatter 
plots which are cost vs. availability, cost vs. utilization and cost vs. percentage cost from PM which 
are displayed in Appendices III and IV.  
 
From the cost vs availability and cost vs utilization diagram in Appendix III, the total cost remains 
almost constant throughout the entire range of availability and utilization. If the cost from PM is 
also constant, it will not be in such cases since with increasing availability and utilization, the cost 
from scheduled and unscheduled maintenance will reduce due to less failure which makes the 
total cost reduce as well. So one can get the insight that the cost from PM for each month is not 
constant. Then, moving onto the cost vs. percentage cost from PM diagram in Appendix IV. The 
total cost remains almost constant (or slightly decreasing) throughout the entire range of 
percentage cost from PM. Since it is known that the PM cost is not constant for each month, it is 
highly likely that the increase of PM cost reduces the cost from scheduled and unscheduled 
maintenance(means less failure) so that the total cost remains unchanged or even decreases. 
Thus, it justifies the hypothesis that increasing the amount of cost on PM will improve the 
equipment condition which increases the availability and utilization. 
 
Some other observations were made from the diagrams of availability and utilization vs. 
percentage cost from PMs in Appendix V. Both diagrams shows that increasing percentage cost 
from planned maintenance also reduces the variability of availability and utilization which can be 
recognized as better machine stability. 

Conclusion 

In conclusion, increasing the cost from planned maintenance can improve truck/shovel condition 
and functionality including its stability. Moreover, a linear model is very good at predicting 
availability and utilization, but it is poor at making predictions on the rest of the targets. In the 
future, more feature engineering will be done, and other machine learning tools will be used for 
this project.  

Reference 

[1]“Ordinary Least Squares regression (OLS),” XLSTAT, Your data analysis solution. [Online]. 
Available: https://www.xlstat.com/en/solutions/features/ordinary-least-squares-regression-
ols. [Accessed: 22-May-2020]. 
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Appendix I: Correlation coefficients between targets and features 
 

Target / Feature % of Late PMs % proxy for 
planned 

% of weekly 
schedule 
compliance 

% cost from 
PMs (Y) 

Cost 

Availability 0.0547 0.1203 0.1096 0.3429 0.2728 

Utilization(Util) 0.0184 0.1269 0.1151 0.3740 0.2411 

Effective Utilization 
(UofA) 

0.0727 0.0519 0.0300 0.1311 0.0351 

Hours 0.1728 0.1219 0.0705 0.3556 0.3486 

Events(Evts) 0.3697 0.2726 0.1580 0.2459 0.0681 

Mean Time Between 
Failure (MTBF) 

0.2611 0.2297 0.0136 0.2520 0.0947 
 
 

 
Appendix II: Final selected features from feature selection 
 

Target Selected Feature(s) 

Availability %cost from PMs, Cost 

Utilization(Util) %cost from PMs, Cost  

Effective Utilization (UofA) Linear model is not appropriate 

Hours % cost from PMs , Cost 

Events(Evts) % of late PMs, % proxy for planned 

Mean Time Between Failure(MTBF) % of late PMs, % of cost from PM 
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Appendix III. Scatterplots of cost vs. availability and utilization 
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Appendix IV. Scatterplots of cost vs. percentage cost from PMs 

 
 
Appendix V. Scatterplots of availability and utilization vs. percentage cost from PMs 
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TTC track re-inspection frequency analysis 
including failure modes 
Janet Lam 
 

Background 
 
One of the responsibilities of the TTC’s Non-destructive testing (NDT) team is to revisit known 
defects in the subway rail system according to a defined timetable. Depending on the severity, or 
priority of the defect, the schedule may be every 21 days, or annually, or something in between. 
When the defects are revisited, the NDT team notes the updated status, and this process is 
repeated until the defects are resolved 
 
As this re-inspection process is known to consume a significant portion of the NDT team’s limited 
time, analysis into the defects was performed. This report is an extension of the project last 
reported in December 2019. 
 
Summary of previous work 
 
In 2019, we focussed on investigating the MOWIS records to determine the provenance of the 
defect histories. A few major issues were resolved: 
 
“Not Found” entries: Each defect can take one of six priority levels—red, yellow, purple, blue, 
brown, and gray, in decreasing order of priority. Though the records are otherwise 
indistinguishable within MOWIS, when records were upgraded from gray to a higher priority, 
they could not simply be updated, they needed to be re-entered as a new defect in the system.  
 
For our analysis, it was necessary to identify these defects and connect them into one known defect 
history, as they are practically speaking the same defect. The process of connecting these histories 
was non-trivial. Matching locations, timing and failure modes was required. 
 
Standards change: At some time in the mid 2010s, a standards change occurred wherein some 
defects previously identified as purple defects were reclassified as blue defects. The defects that 
were affected by the standards change needed to be identified and reverted, so that the change in 
priority on paper did not get analysed as a true change in defect severity. 
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In order to identify these defects, all defects that had a priority downgrade from purple to blue 
were manually inspected. 
 
Analysis 
 
For the analysis of defects, we defined a transition from one state to another as a failure fit the 
transition times to an exponential distribution per priority level. 
 
Recommended re-inspection periods, non-modal 
 
Based on data availability, it was possible to provide results for purple, blue and gray defects. To 
start, the following table summarizes the number of defects under each defect priority, along with 
their transition status. The definitions of the columns are as follows: 
 

Upgrades – defects that transitioned to a higher priority 
Stable – defects that did not transition to a higher priority 
Other – defects that were not counted in the analysis because they are new (only have one 
record), or downgraded. 
 

Table 1. Counts of defect histories by transition status 
 

Priority Total Upgrades Stable Other 
Purple 336 13 313 10 
Blue 64 56 4 4 
Gray 824 36 533 255 

 
In order to analyze the defect transitions, we fit an exponential distribution and determined the 
failure rate, lambda for each priority level. In the following table, the mean times to failure (1/λ) 
are reported. 
 
This was computed using a maximum likelihood estimator, computed as follows: 
 

�̂�𝜆 =
𝑥𝑥

∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 

 
where x is the number of upgrades, and ti is the length of the defect history, regardless of whether 
it was upgraded or not. 
 
Table 2 Transition rates for defect priorities 
 

Priority Mean time to 
transition (days) 

Transition rate 

Purple 3656.69 2.7345E-4 
Blue 4195.75 2.3834E-4 
Gray 9468.69 1.0561E-4 

 
While these mean times to transition seem really high (10 or more years!), the reliability 
requirement is quite high, so very low probabilities of transition are experienced. The following 
table provides a comprehensive overview of reliabilities (probability of no transition) during a 
fixed re-inspection interval. The “Current” interval is the average interval performed by the NDT 
team. The “Standard” interval is the specified inspection interval according to the internal TTC 
requirements. 
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Note that for purple priority defects, the re-inspection interval can be increased to 60 days with 
only a one percent decrease in reliability, or a 0.984 probability that no transition will occur from 
the first identification. Similarly, for blue priority defects, the re-inspection interval can be 
increased to 80 days for a one percent decrease in reliability and a 0.981 probability that there 
will be no transition. 
 
Table 3. Comprehensive reliability results for different re-inspection intervals 
 

Priority 
Level 

Time 
between 
Re-Insp., 

Interval 
Description 

Reliability  Un-Reliability 

R(t) 
% decrease 

from current 
level 

F(t) 
% increase 

from current 
level 

Purple 

17.38 Current 0.995 0.00 0.00474 0.00 

21 Standard 0.994 0.10 0.00573 20.77 

40 1 / 40 days 0.989 0.62 0.01088 129.44 

60 1 / 60 days 0.984 1.16 0.01627 243.22 

80 1 / 80 days 0.978 1.70 0.02164 346.38 

100 1 / 100 days 0.973 2.23 0.02697 468.93 

120 1 / 120 days 0.968 2.77 0.03228 580.86 

Blue 

36.42 Current 0.991 0.00 0.00864 0.00 

45 Standard 0.989 0.20 0.01067 23.43 

60 1 / 60 days 0.985 0.56 0.01420 64.28 

80 1 / 80 days 0.981 1.03 0.01889 118.52 

100 1 / 100 days 0.976 1.50 0.02355 172.51 

120 1 / 120 days 0.971 1.97 0.02820 226.23 

140 1 / 140 days 0.967 2.44 0.03282 279.70 

 
Breakdown by failure modes and priority 
 
TTC has demonstrated interest in addressing different failure modes with different re-inspection 
intervals. For example, should a purple defect of a bolt-hole crack be treated differently from a 
purple defect of corrosion?  
 
In order to perform this analysis, further breakdown of the number of defects that transitioned 
by mode and priority are required. For purple and blue defects, the number of defects per failure 
mode is summarized in the table below. 
 
It is evident that by partitioning by failure mode, the number of transitions for each category is 
deeply reduced. Consequently, it’s not advisable to follow the same method of parameter 
estimation for many of these categories. We will perform the same analysis for bond web crack, 
corrosion, and weld failure mode for the purple priority defects only. 
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Table 4. Summary of transitions by failure mode 
 

 Purple Blue 
Bolt hole crack 1  
Bond web crack 4  
Corrosion 3 1 
Weld 3 1 
Misc 2 2 

 
By performing the same analysis on the three key failure modes, the following results were found. 
 

Failure mode Mean time to 
transition (days) 

Transition rate 

Bond web crack 1778.25 5.6235E-4 
Corrosion 5553 1.8008E-04 
Weld 3940 2.5381e-04 

 
Using these results, similar reliability change tables were generated  
 

Priority 
Level 

Time 
between 
Re-Insp., 

Reliability  Un-Reliability 

R(t) % decrease from 
current level F(t) % increase from 

current level 

Bond web 
crack 

17.38 0.990 0.00 0.00973 0.00 
21 0.988 0.20 0.01174 20.71 
40 0.978 1.26 0.02224 128.69 
60 0.967 2.37 0.03318 241.13 
80 0.956 3.46 0.04399 352.30 

100 0.945 4.54 0.05468 462.23 
120 0.935 5.61 0.06526 570.94 

Corrosion 

17.38 0.997  0.00 0.00313  0.00 
21 0.996 0.07 0.00378 20.79 
40 0.993 0.41 0.00718 129.68 
60 0.989 0.76 0.01075 243.90 
80 0.986 1.12 0.01430 357.72 

100 0.982 1.48 0.01785 471.12 
120 0.979 1.83 0.02138 584.11 

Weld 

17.38 0.996 0.00 0.00440 0.00 
21 0.995 0.09 0.00532 20.77 
40 0.990 0.57 0.01010 129.49 
60 0.985 1.08 0.01511 243.37 
80 0.980 1.58 0.02010 356.66 

100 0.975 2.08 0.02506 469.39 
120 0.970 2.57 0.02300 581.54 
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Based on these results, it is evident that bond web crack defects are more likely to transition to a 
higher priority in a shorter period of time. Thus, increasing the re-inspection interval to 40 days 
will reduce the reliability by 1.26%, whereas corrosion and weld defects can be extended to 80 and 
60 days respectively.  
 
Failure modes with insufficient data 
 
For the remainder of the failure modes listed in Table 4, it is perhaps more meaningful to consider 
a range of possible failure rates, given the number of defects that are on record. Then, we can 
consider the probability of having experienced this outcome if a failure rate were assumed. 
 
For example, there are no defects that transitioned for blue bolt-hole cracks. In fact, there are four 
blue bolt-hole crack defects that did not transition. Using the information that each defect 
survived an average of 397 days without transitioning, we can reflect on the possible transition 
rates and their respective likelihoods. That is, in 1588 days, if the probability of no failures was 
50%, what would the failure rate be? How about 70%, or 90%? 
 
Table 5. Blue bolt-hole crack defects 
 

Defect number Days open Status 
166420 608 Blue – updated 
168630 486 Blue – updated 
171051 369 Blue – updated 
175305 125 Blue – updated 

 
As shown in the following table, given that there were no transitions over the observed lifetimes, 
we can be fairly confident that the mean time to transition for blue bolt-hole crack defects is above 
2300 days, there’s a probability of 85% or more that there will be no transition in one year. 
 
Table 6. Potential mean times to transition and their resulting probabilities. Blue bolt-hole 
crack defects 
 

 Chance of no transition over 1588 days? 

 10% 30% 50% 70% 90% 
Implied mean time to transition 689.66 1318.97 2291 4452.233 15072.06 
Implied transition rate 1.45E-03 7.58E-04 4.36E-04 2.25E-04 6.63E-05 

      
Probability of no transition in one year 0.5890 0.7583 0.8527 0.9213 0.9761 
Probability of no transition in two years 0.3470 0.5750 0.7271 0.8488 0.9527 
 
 
This method was also applied for blue bond web crack defects, and the results are summarized in 
the following tables. For the cases with one or two transitions, we ran into some numerical 
difficulties and will be reserved for some future work. 
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Table 7. Potential mean times to transition and their resulting probabilities. Blue bond web 
crack defects 
 

 Chance of no transition over 1135 days? 

 10% 30% 50% 70% 90% 
Implied mean time to transition 492.92 942.71 1637.46 3182.17 10772.54 

Implied transition rate 2.03E-03 1.06E-03 6.11E-04 3.14E-04 9.28E-05 

 
     

Probability of no transition in one year 0.4769 0.6790 0.8002 0.8916 0.9667 

Probability of no transition in two years 0.2274 0.4610 0.6403 0.7950 0.9345 
 
 
Conclusions 
 
This report broadly summarizes the probability of a defect transitioning from its current priority 
to a higher priority. This was done for purple, blue and grey priorities as a whole, as well as some 
of the specific failure modes. 
 
Generally speaking, an extension of the re-inspection intervals can safely be made without a large 
risk in missing defects before they become high priority. This may result in saved resources of the 
NDT team.  
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Kinross KPI regression analysis report 
Dragan Banjevic, Janet Lam  
 
 
 
 
Introduction 
 
Kinross Gold is interested in analysis of importance and predictability of key performance indices 
(KPIs) used to report monthly activity of their trucks. The main goal of the study was to show 
whether increase in planned maintenance time increases reliability/availability using provided 
KPI measures.    
 
Kinross originally provided a data set that includes records on monthly maintenance activity for 
all units in the fleet for the period of Jan 2012 to April 2017 (2924 records). There are two unit 
types (classes), trucks, and shovels. There are 6 truck CAT models, and 8 shovel models (4 CAT 
and 4 Hitachi). Records are not given for all units for all months. Some records are incomplete as 
some indices are missing.  For initial analysis 158 complete record of monthly activity of CAT 
793D model, units 462-467, are selected. In later stage (April 2020), the monthly records from 
2019 were included for 4 out of 6 trucks. Some KPIs are used to measure monthly maintenance 
activity, and some are used to report work performance. The question is how effective 
maintenance activity is (planned and unplanned) for work performance (availability, MTBF, etc.). 
Another question is whether predicting future work performance (e.g., in the next month) from 
current maintenance activity is possible. 
 
The results of this initial analysis seems promising for establishing relationship of maintenance 
activity with work performance. 
 
Data 
 
The data include five KPIs used to measure maintenance activity and 20 variables that measure 
work performance. We selected all five maintenance KPIs and seven work performance KPIs for 
analysis. For simplicity, we slightly edited maintenance KPIs’ names and used short notation in 
analysis with software R. 
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Maintenance KPIs (input for regression analysis) 
 

 KPI New name Description Short name in R 
1 Cost Cost Actual cost from all 

WO 
in0 

2 % OF Late PM'S  PerLate # cancelled and 10 
days late PMs/Total 
number of PMs 

in1 

3 % proxy for planned 
 

PerProxy # WO with 7 days or 
more lead 
time/Total number 
of WO 

in2 

4 % of weekly schedule 
compliance 

PerComp # WO scheduled 
and completed in 
that week/# WO 
scheduled for that 
week 

in3 

5 %cost from PM's (Y) PerCost Actual cost from PM 
WO/Actual cost 
from all WO 

in4 

6 proactive hours PrHrs Actual hours from 
PM WO 

in5 

 
Work performance KPIs (output for regression analysis)  
 

 KPI Description Short name in R 
1 Availability Overall availability out1 
2 Utilization Overall utilization out2 
3 UofA Effective utilization out3 
4 Hours Unscheduled Down Hours  out4 
5 Events Unscheduled Down Events out5 
6 MTBF = (Oper. Time+Oper. Delay)/12 out6 

 
Some output variables, such as availability, are presented as percentages. They are used in the 
analysis as their decimal values. Some work performance KPIs that are not included in the 
analysis have missing values, but this did not affect selected variables, so no record was deleted 
for that reason. One value for cost was reported as negative number. Four records were removed 
as outliers (with some extreme values). No other problems with the data were found. 
 
Analysis of correlations 
 
We used multiple regression analysis as the main approach to analyse the data. As an initial step 
in the analysis we use scatter plots one output KPI against an input KPI for the same month, to 
see whether there is any visible relationship between them, such as linear. For example, we plot 
availability against % OF Late PMs.  Here we present joint scatter plots of output KPIs vs all input 
KPIs (see next two pages). Scatter plots for Utilization and U of A are not presented, as they are 
similar to Availability scatter plots. 
 
Strong relationships between input and output KPIs cannot be seen, but there are clear trends in 
several cases when an input KPI increases, then an output KPA improves (either increases, or 
decreases as it would be expected). For example, when PerComp, PerCost, or PrHours increase, 
then Availability tend to increase (Figure 1), or when PerCost, or PrHours increase, then Hours 
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and Events tend to decrease (Figures 2 and 3). Notable clusters and trends are highlighted with 
red circles and straight lines. 
 
The scatter-plots can be accompanied with paired correlation coefficients that quantify 
relationships of input and output variables. It should be noted that correlation coefficients 
measure strength of linear relationship, not any relationship. As we are interested in prediction 
of outputs from past inputs, we also look at relationships between current output KPIs, and input 
KPIs from the past. The correlation is a value between -1 and +1, where a value close to 0 indicates 
a week linear correlation between variables, and a correlation closer to +1 or -1 indicates stronger 
linear correlation between variables. Here we present correlations between output KPIs for a 
current month and input KPIs from one month before, and from two months before.   
 
Figure 4. Joint scatter plots of MTBFs vs all input KPIs  
 
d a lot of them are close to 0. Stronger correlations are highlighted in darker colour. The correlations of different 
pairs are relatively consistent for different periods, but not always. For example, correlation between Availability and 
input   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Joint scatter plots of Availability vs all inputs KPIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Joint scatter plots of Hours vs all input KPIs. 
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Figure 2: Joint scatter plots of Hours vs all input KPIs 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Joint scatter plots of Events vs all input KPIs. 
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Table 1. Correlations between input and output KPIs for the same month 
 
 

 Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail -0.298 -0.209 0.095 0.286 0.409 0.094 

Util -0.267 -0.162 0.128 0.283 0.411 0.093 

UofA 0.083 0.136 0.124 0.011 0.035 0.014 

Hours 0.348 0.158 -0.107 -0.193 -0.375 -0.125 

Evts 0.036 -0.027 -0.261 0.109 -0.204 -0.060 

MTBF -0.115 -0.043 0.265 0.045 0.292 0.089 

 
Table 2. Correlations between input and output KPIs for one-month back 
 

 Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail 0.001 -0.134 0.146 0.074 0.199 0.050 

Util 0.019 -0.070 0.214 0.094 0.209 0.033 

UofA 0.058 0.189 0.216 0.057 0.046 -0.048 

Hours -0.004 0.104 -0.149 -0.095 -0.212 -0.054 

Evts 0.038 0.037 -0.211 0.118 -0.263 -0.006 

MTBF -0.030 -0.074 0.212 -0.074 0.322 0.042 
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Table 3. Correlations between input and output KPIs for two-months back 
 

 Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail -0.108 -0.168 0.194 -0.004 0.204 0.063 

Util -0.073 -0.093 0.244 -0.030 0.204 0.068 

UofA 0.112 0.225 0.164 -0.090 0.021 0.023  

Hours 0.095 0.158 -0.166 -0.011 -0.204 -0.080  

Evts -0.058 0.147 -0.276 0.022 -0.226 -0.139  

MTBF 0.019 -0.150 0.277 -0.009 0.282 0.170 

 
 
No correlation is greater than 0.411, KPIs is stronger for the current month, but much weaker for 
one month back, or two months back. Correlation between output KPIs and PerProxy, or PerCost 
is consistent over current month, one-month and two-month periods. In addition to it, the same 
positive sign of the correlation means that, when PerProxy or PerCost increase, Availability, 
Utilization, U of A, and MTBF increase, but Hours and Events decrease, as it would be expected 
when proactive maintenance improves reliability. Another example: when Perlate increases, 
Availability, Utilization, and MTBF decrease, but U of A, Hours, and Events increase. How could 
we explain seemingly unexpected increase of U of A? even if availability decreases, the demand 
likely does not go down, so more of the available time will be used. 
 
As a preliminary conclusion, we may say that PerProxy, and PerCost are the two input KPIs most 
indicative of improvements in maintenance and reliability in most of the cases. On the other hand, 
PrHours KPI is a week indicators of output KPIs, most of the time. How exactly those and other 
input KPIs affect the output KPIs we will see from the regression analysis results. 
 
Regression analysis 
 
We have started building regression analysis models for functional relationship of output KPIs 
with input KPIs, and, as expected from the correlation analysis, in all models %cost from PM's 
appears significant factor, and, to less extend, % proxy for planned. It does not mean that other 
input variables don’t have contributions, but they are overshadowed with the first two. Due to not 
very strong correlations between input and output variables, the predictive power of the models 
is not strong, but is still useful.  
 
We are interested in building extended models with including lags (not only the current month’s 
input results, but also the past months’ input results), and interactions. Other options are 
possible, and they may appear over the course of the analysis. We have also tried transforming 
some variables using log function, such as cost or MTBF, which somewhat improve regression 
models, but not significantly. Log transformation is used for the variables that can take large 
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values in comparison with other input or output variables. Here we will report only models that 
include untransformed variables. All regression models are of the form 
 

𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘, 
 
where 𝑦𝑦� is predicted output KPI, 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘 are input KPIs, and 𝑏𝑏0,𝑏𝑏1, … , 𝑏𝑏𝑘𝑘 are regression 
parameters. 𝑏𝑏0 is called intercept. 𝑏𝑏𝑖𝑖 = 0 means that input variable 𝑥𝑥𝑖𝑖 is not statistically significant 
for prediction of output y, not necessarily that it is not somehow related to y, as indicated above.  
 
The selection of significant predictor input variables is done by a statistical procedure, combined 
with some expert judgement, and is not straightforward. In the following we will report models 
for all output KPIs for three cases, when the current month input is used, when one-month back 
input is used, and when the both one month and two months’ input is used. In the tables below 
we will report non-zero coefficients, and exclude intercept. Actual values of different coefficients 
are not comparable, in principle, as they are relative to the variable magnitude, not the variable 
importance. What is important for our analysis is the sign (“+” or “-“) of a coefficient indicating 
direction of the change.  
 
Table 4. Regressions for the same month: Output on the left side, input on the top  
 

 Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail -8.440e-07   0.149 0.116  

Util -5.796e-07   0.115 0.103  

UofA       

Hours 7.172e-04   -61.63 -67.10  

Evts   -10.169  -2.442  

MTBF   41.356 15.631 14.810  

 
For example, 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 + 41.356 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑥𝑥𝑦𝑦 + 15.631 × 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑚𝑚𝑃𝑃 + 14.810 × 𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 is a 
model for predicting MTBF. Positive coefficients are highlighted in green, and negative in light 
yellow. You can consider change in direction either for an output variable, or for an input variable, 
similarly as with correlations. For example, Availability will tend to go up if Cost go down, or 
PerComp, or PerCost go up. Availability Utilization and MTBF will tend to go up when PerCost go 
up, but Hours and Events will tend to go down when PerCost go up. It can be noted that PerLate 
does not contribute to prediction of any output KPI when accompanied with other input KPIs for 
the current month. The other two cases for prediction using past information are in a somewhat 
different situation. 
 
  

No significant model 
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Table 5. Regressions of the present using one-month back inputs: Output on the left 
side, input on the top  
 

 Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail  -0.050 0.094  0.057  

Util   0.110  0.051  

UofA 1.330e-07 0.021 0.055 0.029  -2.219e-04 

Hours     -54.83  

Evts   -6.790  -4.594  

MTBF   21.973  20.302  

 
 
The regressions are somewhat different. PerProxy now appears to be significant in prediction of 
all outputs, except for Hours. There is a model for predicting U of A. The last month Cost is not 
informative, except for U of A. 
 
Table 6. Regressions of the present using one and two months back inputs: Output 
on the left side, input on the top; Lag 1: one-month inputs, Lag 2: two-months inputs. 
 
 

 Lag Cost PerLate PerProxy PerComp PerCost PrHrs 

Avail 
1       

2 -4.41e-07 -0.059 0.137   6.57e-04 

Hours 
1   -69.30  -37.55  

2 2.926e-04 35.89    -0.546 

Evts 
1    4.720 -3.577  

2 -1.346e-05 3.712 -8.077  -2.757  

MTBF 
1     18.802  

2  -10.180 29.906   0.102 
 
 
For simplicity, we did not include regression models for prediction of Utilization and U of A.  In 
the case of inputs from the past two months, it seems the two-months back input appears more 
often than the one-month back input, but they are also combined, except in the case of 
Availability. 
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Effectiveness of prediction 

Accuracy of prediction cannot be seen directly from regression models, but from comparison of 
actual outputs with predicted (fitted) outputs. It can be measured by the average prediction error, 
or a relative error, a percentage of error in comparison with actual value. In our cases, the 
accuracy, on average is not high, but has an interesting feature: it often depends on the magnitude 
of the prediction. We will explain it in some details by using scatter plots of actual values vs 
predicted/fitted values from regression models. If a model were accurate, the points on the graph  
would closely follow line y = x, otherwise they would be scattered around. We will show a couple 
of examples. 
 
Figure 5. Scatter plot of availability vs fitted value for the same month prediction 
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Figure 6. Scatter plot of hours vs fitted value for the same month prediction 

 
 
Prediction of Availability from the same month input KPIs (Figure 5) is fairly accurate for high 
level Availability such as 95%, and less accurate for, e.g., 90%. Variation of y values for fixed x 
value increases when x decreases. The pattern is similar for cases when past information is used. 
The prediction of Hours from the same month input KPIs (Figure 6) is fairly accurate for low 
Hours such as below 50, and less accurate for values above 50. Variation of y values for fixed x 
value increases when x increases. Pattern is similar for cases when past information is used. 
Prediction for Events behaves similar to one for Hours. For MTBF similar behaviour as for Hours 
and Events is less visible. Accuracy of all models’ predictions slightly increases with more 
information used from past. 
 
Conclusions 

 
• There is no strong correlation between input and output KPI indicators.  
• %Proxy and %PM Cost are more indicative of outputs KIs than the other variables. 
• Regression models don’t give precise estimates of the outputs but show tendency of increasing 

availability and MTBF, and decreasing hours and events when amount of proactive 
maintenance increases, for example, when %PM Cost increases. 

• Models that include pasts two months’ information tend to give somewhat better predictions. 
 

Next steps 
 
We want to include more data in the regression models, such as 2018 records, for CAT793D. We 
want to consider data for another model, CAT793F, either for a separate analysis, or in 
combination with CAT793D model. We want to do more detailed analysis of outliers that may 
appear from situations unrelated to regular proactive maintenance. A possibility that should be 
explored in modelling is to include all past information, input and output KPIs, not only input 
KPIs, to predict output KPIs. In addition, we can create models to predict cost of reactive 
maintenance from past information. 
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DND: Propulsion diesel engine reliability 
modelling  
Arun Shanmugam 
 

Background 
 
The Canadian Department of National Defense has twelve Halifax-class (aka City-class) frigates 
in operation that have served the Navy since 1992. The propulsion system on these vessels consists 
of a Propulsion Diesel Engine (PDE) and two Gas Turbines that work in a Combined Diesel Or 
Gas (CODOG) arrangement, with the PDE functioning during cruising speeds and the turbines 
serving high speed dashes. The Propulsion Diesel Engine (PDE) is the object of this reliability 
modelling study.  
 
Current procedures in maintenance activity & information management  
 
The PDEs are subjected to an Oil & Coolant Conditioning Analysis Program (OCCAP) once every 
30 days which involves offsite analysis of oil & coolant samples by a third party while maintenance 
decisions are made by the Fleet Maintenance Facility (FMF). Disparities have been observed 
between results of the OCCAP analysis and recommendations of the maintenance technicians and 
these disparities have proven challenging while making decisions regarding scheduling of 
maintenance activities.  
 
The maintenance activities of the PDE are carried out in conjunction with the Defence Resource 
Management Information System (DRMIS) – a SAP-based integrated information system that 
supports maintenance activities and replacement part procurement among other business 
processes. The DRMIS generates work orders for scheduled preventive maintenance actions and 
keeps track of corrective maintenance orders. The integrated system generates purchase orders 
for replacement parts that need to be procured towards completing corrective maintenance. This 
introduces a significant challenge in analysis since orders are not indicative of failure or 
suspension events but associated part replacements that could be one or many depending on the 
maintenance activity.  
 
Problem Statement 
 
The objective of the project is to develop a model to predict engine failure with the use of a Weibull 
Proportional Hazards model. This will involve constructing an event history of failures and 
suspensions of the PDEs that will be used with OCCAP data to construct a Transitional Probability 
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Model on EXAKT Condition-Based Maintenance software. The analysis also has the scope to 
assess & refine current maintenance policy with the inclusion of costs involved during corrective 
and preventive maintenance activity.  
 
Data cleaning 
 
Mr. Jamie Dreyer in collaboration with Ms. Nicolle Kilfoyle prepared three files towards the 
analysis: the DRMIS work order dataset with 4678 orders from November 2012 to March 2019; 
OCCAP oil and coolant conditioning data from December 2012 to January 2019; and monthly 
PDE odometer reading data.  
 
Since the DRMIS generates work orders that double as procurement orders, this introduces great 
ambiguity in determining the number of events. Further, the dataset of work orders also contains 
quite a few orders for replacement that are not critical to the functioning of the engine such as the 
replacement of bulbs. This necessitated a case-by-case analysis of work orders in close 
collaboration with DND, an ongoing process in the project.  
 
The dataset contained orders for multiple parts associated with the same failure or suspension 
event which would have potentially resulted in an over-estimation of the number of 
failures/suspensions. This necessitated grouping of orders based on how close they are with each 
other chronologically, odometer running hour and most importantly, DNDs input so that the 
Weibull model would closely mirror reality. 
 
The DRMIS generates orders codes for different classes of orders that link to 
preventive/corrective maintenance. However, this distinction is not always consistent since 
preventive maintenance orders generate “dummy” corrective maintenance orders to pull spare 
parts associated with the PM action. The characterization of a failure or suspension event is 
therefore, not a straightforward task due to the nature of the data and the complexity of the PDE 
as an asset.   
 
Characterization of failures and suspensions 
 
The costs associated with the procurement of replacement parts is a metric that we relied on to 
distinguish failure/suspension events critical to functioning. The hypothesis was that critical 
failures and/or suspensions would be characterized by a relatively higher total cost of replacement 
and hence, can be used to focus the analysis on the orders that link to engine functioning.  
 
During the first phase of analysis, the cost threshold for a significant failure was determined to be 
35000 CAD for corrective maintenance actions. It was also imperative to the analysis that all 
maintenance actions under consideration would bring the engine to a “good-as-new” working 
condition. Based on DND input, it was understood that all corrective actions resulted in 
restoration of PDE to good as new while not all preventive maintenance actions did not. 12K and 
15K preventive maintenance actions and 24K overhauls brought the PDE to “as-new” condition 
and therefore, it was decided that orders linked to these PM actions would be considered 
significant and relevant for analysis. This resulted in the reduction of orders relevant to Weibull 
analysis from the initial number of 4678 to 80. This was followed by preparation of the data for 
EXAKT Weibull analysis.  
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Weibull analysis and further investigation 
 
The Weibull analysis yielded a shape parameter that was not commensurate with assets such as 
the PDE. This was largely owing to the practical complications surrounding the data – the orders 
do not have a one-one correspondence with events as described earlier and multiple events with 
the same running hours in the reduced order set were considered to be one in the EXAKT analysis 
since the working age readings correspond to month-wise readings and not hour reading at the 
time of failure.  
 
Consequently, we consulted with DND to revisit the list of events under consideration and this 
resulted in the second phase of analysis which involved revisiting the cost threshold and 
consolidation of duplicate/cancelled orders, in an attempt to refine the model.  
 
It was determined that there did exist failure events below the 35000 CAD threshold and so, the 
cost threshold was moved to 10000CAD, and removal of duplicate/cancelled orders. This resulted 
in a new list of 209 orders which was subjected to the same EXAKT Weibull analysis as was done 
before. This resulted in only a marginal increase in shape factor but was still not reflective of the 
actual reliability behaviour of PDEs.  
 
Inter-failure time analysis 
 
The continued repeat of unexpected outcomes with the Weibull analysis necessitated an Inter-
failure time analysis. Time between successive events was analyzed using a histogram (see Figure 
1) and it was observed that most IFTs could be found in the less than 250 running hours mark. 
This struck us as abnormal since typically failure events are farther apart, so we decided to take a 
closer look at these orders.  
 

Figure 1. Inter-failure time analysis histogram 
 

 
 

 
This ski-slope shape indicates a shape factor of less than one, which is not consistent with the 
behaviour of engines. When we increased the resolution of analysis of events less than 250 hours, 
we obtained the following histogram. 
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Figure 2. Analysis of orders less than 250 hours 
 

 
 

Upon futher invetigation, we decided to conduct a failure mode wise analysis. This involved 
classification of each failure based on the sub-system the failure affected and this was followed by 
grouping failures of each sub-system together. As a consequence, the number of failure events 
were correspondingly reduced and since inter-failure time analysis requires at least two failure 
events, this resulted in only four failure mode being amenable to further analysi, namely: 
Instrumentation & Safety System failures, Diesel, Engine failures, Water Circuit failures and 
Exhaust failures. Figure 3 shows the split-up into IFT analysis for component failure modes. 
 

Figure 3. Split-up into failure modes 
 

 
 
Weibull analysis 
 
The Inter-failure times were plotted on the Weibull chart with a log-log scale as shown in Figure 
4. From the figure, we observe that Weibull fit achieved and this proves the hypothesis that failure 
modes need to be investigated separately in a complex asset such as the PDE.  
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Figure 4. Plotting on Weibull paper 
 

 
 

Shape factors for different failure modes are in the neighbourhood of 1, indicating the shape of 
the failure probability distribution is exponential. The scale factors provide an idea of the 
characteristic life of the PDE for each failure mode and what to expect from the behaviour of the 
PDE. 
 
Preventive maintenance policy re-design 
 
One of the key motivations of the project was to re-examine the current preventive maintenance 
policy through the lens of total cost of maintenance. Current maintenance policy involves 
preventive maintenance actions at 1500 hrs, 3 months, 6 months, 12K, 15K, 24K, etc. with 
maintenance actions at 12K/15K and 24K running hours bringing the engine to good-as-new 
working condition.  
 
Preventive maintenance policies are broadly categorized as either interval (block) replacement or 
age-based replacement strategies. While block replacement strategies are easier to implement, 
age-based replacement strategies provide a lower total expected cost of replacement overall. 
 
Three factors are critical when it comes to PM policy re-design: the underlying distribution must 
be Weibull, cost ratio of average failure replacement to average preventive replacement, and 
design must be optimized for minimization of total cost. Since labour or man hour costs & costs 
associated with downtime are not available, the cost associated with preventive replacement 
cannot be computed & so, cost ratio, k cannot be calculated directly. Typical values of k for assets 
such as PDE is in the neighbourhood of 6:1 and hence, decision models for each failure mode were 
generated in the neighbourhood of 6:1. Depending on failure criticality & expert knowledge, DND 
would proceed to choose from the given options to best fit engine operation. 
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Decision models 
 
Decision models were generated by inputting inter-failure times on one hypothetical PDE for each 
failure mode on EXAKT software to come up with optimal preventive maintenance periods. Figure 
5 shows the optimal preventive replacement age for the diesel engine failure mode as an 
illustration. It can be noted that 733.364 is the optimal replacement interval for this failure mode 
and this means that inspections for PM actions for diesel engine failures can be scheduled around 
this running hour mark. 
 

Figure 5. Decision model for optimal preventive replacement age 
 
 

 
 

 
Figure 6 is a table that provides a good rule-of-thumb for optimal PM age in running hours of the 
engine for each failure mode. Depending on failure mode criticality and expert knowledge of the 
appropriate k value, the corresponding preventive replacement age can be picked. While it can be 
unrealistic to carry out PM at these age intervals for just one failure mode, this provides a good 
framework for designing a checklist for PM inspections. Once PM age intervals are decided, a 
comprehensive PM policy can correspondingly be designed around decided age intervals. 
 

Figure 6. Optimal preventive replacement age for different values of cost ratio K 
 

 
 
Conclusion and Future Work 
 
The optimal preventive replacement age table provides a good platform to begin a more cost-
centric approach to re-designing PDE maintenance policy. The next steps involve integrating the 
Oil & Coolant Conditioning Analysis (OCCAP) data to get a PM policy model that takes both age 
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of the asset and condition monitoring information to provide a more holistic model for 
maintenance policy optimization.  
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UKMOD long-term project planning in the face of 
uncertainty 
Janet Lam 

Background 
 
This project originally started as an analysis of the trade-off between achievements and flexibility 
when it comes to project planning. The overall idea was to consider the outcomes of various long-
term projects and their duration, while the environment changed around us. While the original 
step-change events were paradigm-breaking technologies such as the Internet and smartphones, 
today’s pandemic-driven lock down is another step-change that can waylay the best-laid plans. 
 
The extension of this project is to include the consideration of budget limitations and building 
toolkits to be used at a later time. 
 
Summary of previous work 
 
In the last report, we discussed the varying payoffs of projects with different duration, which are 
in direct opposition to exposure resulting in loss of value. For example, we may plan to achieve a 
specific objective with a 10-year project or a 5-year project. Reasonably, the longer project may be 
“better” in a variety of ways due to more flexibility in scheduling and resources, whether it is a 
greater chance of achieving the objectives, or greater profit, or some other metric. However, the 
longer project has proportionately more exposure to external risk. 
 
For example, once the project starts, a small percent of the potential value of the project is lost 
every year due to constant but minor updates in technology. Additionally, every year, there’s a 
risk of a step-change event that results in a significant loss in value of the project. As a timely 
example, an investment into a downtown fine-dining restaurant may have lost significant value 
in 2020. 
 
In the previous report, we reported back relative values of projects based on their project 
durations. The equivalence table answered the question: what value must a project of duration x 
have to be worth as much or more than a project of duration y? 
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Extensions – Budgets and technology cupboards 
 
The work done to date gave us a view into the relationship of project duration and their risk, but 
did not account for the rest of the research and development realities, such as budgets and 
investments into existing capabilities. 
 
Consider, for example, a fleet of existing aircraft that is at its mid-life. Then, a given budget can 
be used to update the fleet or used for a new project/aircraft altogether. Regardless of how it is 
used, the budget is fixed. The research question then becomes: how might the budget best 
distributed to get the best value from our existing project and new project? As we explore this 
question, we still maintain the gradual loss of value as the project is progressing, and the 
probability of a step loss in any given year. 
 
The effect of mid-life refit on existing technology 
 
When existing aircraft is given a refurbishment, there are three ways to categorize its outcome:  
 

• good as new – original technology is restored and is working as if new, returned to 100% 
of original value 

• better than new – the health of the equipment has been restored along with some new 
technology implemented. Restored to 120% of original value 

• better than old – system health is partially restored, but not in as good health as new. 
Restored to 80% of original value 

Depending on the amount of budget that is invested into the refurbishment, the value and 
results of the refurbishment may be different. For this study, we define B as the budget, and 
break it down into low, medium and high proportions of the budget invested into the refit.  
With a low proportion of the budget invested into refurbishment, let’s say that the value of the 
existing technology following the refit is determined according to the following probability 
distribution: 
 

Table 8 Probability distribution of restored value for low budget 
 

% of original 
value 

With probability 

100 0.15 
120 0.05 
80 0.8 

 
 
Similarly, for the medium and high budget scenarios, the resulting values were set as follows: 
 

Table 9 Probability distribution of restored value for medium and high budget 
 

% of original value With probability 
(for med budget) 

With probability (for 
high budget) 

100 0.8 0.15 
120 0.1 0.8 
80 0.1 0.05 
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Value of new project with budget constraint 

 
With the remainder of the budget, we will invest into our new long-term project, that can either 
be high, low or medium budget, depending on how much funds are left after refitting the existing 
technology. If the refit budget investment was low, then the new project can be high, low, or 
medium budget, since we can opt to choose less than the full budget. However, if the refit 
investment was high, then the new project budget can only be the low investment option.  
 
The treatment of the new projects will mirror the previous work that was done. That is, we’ll have 
5, 10 and 20 year projects representing the low, medium and high investment options 
respectively, and their probabilistic losses in value will remain the same. The parameters used 
previously were as follows: 
 

• Annual depreciation rate: U[0.01, 0.02] 
• Annual probability of a catastrophic event: 0.05 
• Percentage project value lost in the event of a catastrophic event: U[0.2, 0.8] 

The total project value will be the sum of the two project values.  
 
The resulting probability distributions can be seen in the graphs below. The graphs cannot be 
compared directly, because each project length is given the value “100” to start, but it’s not 
reasonable that a 5-year project and a 20-year project have the same value. Rather, we can explore 
the shape of the graph and the patterns of the distributions. 
 
We can see that when a short project is considered (5-years), the contribution to existing 
technology is more impactful. This can be identified by the very tall peaks seen in the “5-year 
project” graphs. As the new project durations get longer, the impact of the refit is reduced, as the 
entropy over time smooths out the possible outcomes. 
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Next steps 
 
Though these graphs may demonstrate the changes over time and probabilistic outcomes, the 
parameters were defined as fixed values based on general knowledge. It would be preferable to 
set up a system that allows users to experiment with different outcomes and probabilities, as well 
as relative values of short/long projects so that a more direct comparison may be made. A Shiny 
app may be developed to allow for user inputs of various parameters, including the value earned 
by refit investment levels and their associated probabilities, the regular and step losses on the new 
projects, and more.  
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Appendix 1. Maintenance scheduling integrating 
replacement impact 
Zihan Zhang 
 

Background 
 
Maintenance scheduling for a complex system requires an accurate evaluation of the degradation 
states of its constituent components and a sufficient understanding of how these states evolve in 
the future. These challenges become more complicated when the components of a system are 
interdependent. There are three common forms of dependencies among components: 
 

(1) Economic dependence: implies that either cost can be saved when several components are 
jointly maintained instead of separately; 

(2) Structural dependence: applies if components structurally form a part, so that 
maintenance of a failed component implies maintenance of other components as well; 

(3) Stochastic dependence: occurs if the state of a component influences the lifetime 
distribution of other components. 

 
This project focuses on stochastic dependence, which refers to situations where the replacement 
of one component influences the degradation level of other components in the system. In 
particular, we assume that when a component is replaced, it affects the performance of other 
components in the system by accelerating their degradation process.  
 
System characteristics 
 
The system has saN  subassemblies and cN  components. Assume that degradation of component 

follows Gamma process. Denote the degradation level of component i  at time t  by ( )iX t , we can 

express degradation process as ( ) ( ); ,i i iX t G t α β: , where iα  and iβ  are corresponding shape 

parameter and scale parameter of component i , and degradation increment in time interval ( ),s t  

as ( ) ( ) ( ) ,i i iX t s X t X s s t∆ − = − < . Further, the probability density function (PDF) of 

component i  in ( ),s t  can be given as  
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where ( )Γ ⋅  is the complete gamma function, and {}Ι ⋅  is the indicator function, which equals 1 
when the statement is true in the brace and 0 otherwise. When the system is brand new, the initial 
degradation levels of all the components are zero, i.e., ( )0 0, 1, ,i cX i N= = L . 
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Figure 1. System structure 
 

Reliability analysis 
 
Based on the hierarchical structure of system, system reliability depends on reliability of 
individual subassemblies, and subassembly reliability is determined by its inside components. 
Therefore, we first analyze component reliability, then reliability of subassembly/system based 
on their structural dependence.  
 
Component reliability  

 
Considering component undergoes degradation process, where degradation level may contribute 
to the increment of hazard rate, we model the hazard rate as a function of degradation level to 
describe its deterioration mechanism. Notably, the degradation results in increasing the hazard 
rate instead of leading to malfunction. Let ( )( )iX tλ  be the hazard rate of component i  with 

degradation level ( )iX t . Here, we assume that component degrades stationarily and ( )( )iX tλ  is 

a linear function of degradation level, i.e., ( )( ) ( )i iX t X tλ κ= , then component reliability can be 
derived from Proposition 1. 
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 Proposition 1. When component i  survives at time 1t  with degradation level ( )1iX t , the 

reliability of component i  at time ( )2 2 1t t t> , ( )12 1 ,; ,c
i i tR t t X , can be expressed as 

 

 
( ) 2 1

1 12 1 , , 0
; , exp log 1 ,

/
t tc

i i t i t i
i

sR t t X X dsκ α
β κ

−  
= − − +     

∫
  (2) 

 
where ( )

1, 1i t iX X t= . 
 
Structure analysis  
 
Assume all components degrades independently during operation. The reliability of 
system/subassembly is determined by individual components. Denote the structure function by 
( )tφ , specially, ( )s tφ  for system and ( )sa

j tφ  for subassembly j , the reliability of 
subassembly/system can be derived once the component reliability is available. For instance, if 
two components are connected in series in a subassembly, the reliability of the subassembly is 

( ) ( )( ) ( ) ( ){ }1 2 1 2, min ,sa c c c cR t R t R t R tφ = , whereas ( ) ( )( ) ( ) ( ){ }1 2 1 2, max ,sa c c c cR t R t R t R tφ =  is for a 

parallel connection.  
 
Subassembly/system reliability  
 
Because subassembly/system reliability is determined by their inside components, if components 
inside subassembly j  survives at time 1t  and their degradation levels are known, the reliability of 

subassembly j  at time ( )2 2 1t t t> , ( )12 1; ,sa c
j tR t t X% , can be given as 
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where  { }1 1 1 1

,
1, , ,

, , , , ,j
c j j
t t i t S t

X X X X i S= ∈% L L . Analogously, the system reliability, ( )12 1; , sa
s tR t t X% , 

can be expressed as 
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where  { }1 1 1 1

,,1 ,, , , , , 1, ,sac Nsa c c j
t t t t saX X X X j N= =% % % %L L L . 
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Problem statement  
 
Assumptions 
 
1. At each preventive replacement opportunity, only one component or subassembly can be 
replaced.  
2. The degradation processes of all components are stationary (the premise of proposition 1). 
3. If one component has failed, then there could be an opportunity to check the other components 
within the subassembly, whiling conducting preventive replacement.  
 
Production scenario 
 
All the components start to operate from brand new states, where ,0 0iX = . A fixed mission is 

allocated to the system to finish. Per mission consumes time mT  and receives Rc  production 
benefits after successful accomplishment. But as time goes by, the system will deteriorate shown 
in the increasing degradation level of components, and finally break down when the system 
reliability exceeds the predetermined threshold F

sδ . In order to ensure the long-term benefits, 
maintenance activities need scheduling to restore the performance of the system. After 
restoration, the system restarts its production and repeat the procedure until the planning horizon 
exceeds mT . 
 
Maintenance policy 
 
If the system fails during the operation, a repair need executing to return the system to a ‘as-good-
as-new’ state. If the system successfully finishes a mission, preventive replacement (PR) is 

conducted if the system threshold is lower than the acceptable healthy threshold 
H
sδ . Here, two 

levels of preventive replacement can be scheduled: (a) subassembly level preventive replacement 
(sPR), and component level preventive replacement (cPR). 
 
Although PR can restore the performance of the replaced component/subassembly, this 
disassembling action will increase degradation levels of other components, which may result in 
system malfunction in the next mission. To avoid the underlying malfunction risk, a corrective 
replacement (CR) is needed. Note that, all the downtime due to maintenance actions will have a 

penalty of 
Dc  per unit time. Implementation details of maintenance activities are outlined below: 

 
1. Repair.  

 
If the system breaks down during the mission, it will be repaired with a cost CRc . Besides, all the 

repairs take CRτ  before starting a new mission. If a failure occurs, then the entire system will be 
repaired to “as-good-as-new” condition.  
 

2. Preventive replacement (PR).  
 
After each mission, if PR satisfies the execution threshold, component/subassembly will be 
replaced. PR includes a process of dissembling, replacing and reassembling. Here, we regard the 
cost/time for disassembling/assembling are the same, so we use ‘disassembly time/cost’ to 
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represent the time/cost related to both processes of disassembling and reassembling. The 
discrepancies between two levels of PR exist in: 
 
(1) sPR: If it is determined to replace a subassembly, we only need to disassemble the system and 
subassembly, then replace it without dissembling components inside;  
(2) cPR: If it is determined to replace a component, we need to disassemble system, its outside 
subassembly, and other components in the subassembly; then replace the component.  
 
Denote PR cost/time of component i  in subassembly j  by cPR

ic / cPR
iτ . They can be expressed as  

 

 

,

,

j
i

j
i

cPR sd d d cr
i j iS

cPR sd d d cr
i j iS

c c c c c

τ τ τ τ τ

= + + +

= + + +
  (5) 

 
where sdc / sdτ  are cost/time of disassembling system, d

jc / d
jτ  are cost/time of disassembling 

subassembly j , j
i

d
S

c / j
i

d
S

τ  are cost/time of disassembling components in subassembly j , cr
ic / cr

iτ  

are cost/time of replacing component i . 
 
If sPR

jc / sPR
jτ  are PR cost/time of subassembly 'j  by '

sPR
jc / '

sPR
jτ , we can obtain 

 

 

' ' '

' ' '

,

,

sPR sd d sr
j j j

sPR sd d sr
j j j

c c c c

τ τ τ τ

= + +

= + +
  (6) 

 
where '

sr
jc / '

sr
jτ  are cost/time of replacing subassembly 'j . 

 
Although PR can restore state of replaced component/subassembly, the disassembling actions 
will increase degradation levels of other components.  
 
Specially, denote ,i pX −  as the degradation level of component i  after the -thp  mission and ,i pX +  as 

the degradation level of component i  after PR of the -thp  mission. Let iY  be the increment of 

degradation level of component i  if it is affected by disassembling actions. It is assumed that iY  

is independent of the degradation level ,i pX −  and follows a Gaussian distribution with mean 
iYµ  

and variance 2
iYσ , ( )2,

i ii Y YY N µ σ: , where 2
i iY Yµ σ? . Based on the above definition, we have 

 

 , ,i p i p iX X Y+ −= +   (7) 
 
It is also assumed that when disassembling the system, all the degradation levels of components 
will not be affected. It is common in real application, such as opening rear hatch to repair a car. 
Then the degradation impact also has two corresponding levels: 
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Subassembly level: When disassembling a subassembly, the degradation levels of components 
inside the sub-assemblies connected with the disassembled assembly will increase iYε , where 

( )0,1ε ∈ . For instance, the disassembly of subassembly 1 will affect subassembly 2 and 3; the 
disassembly of subassembly 4 will affect subassembly 2 and 3; and the disassembly of 
subassembly 2/3 will affect all other sub-assemblies except themselves. 
 
Component level: When disassembling components inside a specific subassembly, all the 
degradation levels of un-replaced components will increase iY . Note that because the subassembly 
has been removed from the system, the component level disassembling actions will not have 
impact on other components in other sub-assemblies. For example, when replacing component 4 
after taking down subassembly 2, the degradation levels of component 5 and 6 will both increase.  
 

3. Opportunistic corrective replacement (OCR).  
 
As PR will influence degradation levels of other components, it may lead to system malfunction 
in the next mission. Thus, corrective replacement (CR) can be scheduled when replacing 
components. Note that CR is only for component level PR rather than subassembly level PR. It is 
because when we have removed the subassembly from the system, we can use the opportunity to 
replace its inside components which are not replaced by PR, but their degradation levels after PR 
cannot be accepted. This replacement has no secondary effects on degradation levels of other 
components, because all the components inside this subassembly have been separated in PR. 
Therefore, this type of replacement is also an opportunistic corrective replacement (OCR), whose 
function is two-tier: 
 
(1) Reduce malfunction risk in the following mission; 
(2) Share the setup cost. 

 
For notational convenience, we don’t make difference between OCR and CR in this work. Denote 

j
pπ  as the decision rule of CR of disassembled subassembly j  after PR of -thp  mission, that is 

 

 

1,     CR is executed,
0,     otherwise.

j
pπ


= 
   (8) 

 
Because CR should be executed when the degradation level of component l  inside the 
disassembled subassembly reaches a pre-specified threshold, defined by 
 

 ( ), ,l
l p l cP X Y δ ξ− + < >

  (9) 
 
where l

cδ  is the CR threshold of component l  inside the subassembly j  and ξ  is the acceptable 

risk threshold. Since lY  follows a Gaussian distribution, it follows that 
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Therefore, CR of disassembled subassembly j  after PR of -thp  mission can be given as  
 

 

( ){ }10 , if  0,

1 ,otherwise.

j

l l

S

l Y Y
l ij

p

Y µ σ ξ
π

−

≠


≥ + =

= 



∑Ι Φ

  (11) 
 
Remark. Because OCR leverages the opportunity of PR, we can take these two types of 
replacements into consideration and regard them as a preventive maintenance (PM). According 
to different levels of PR, we analogously divide PM into two levels: PM with sPR (sPM) and PM 
with cPR (cPM).  
 
As mentioned above, sPM will not provide opportunities to schedule OCR, so the cost/time of 
sPM is the same as sPR. We can easily obtain cost/time of sPM of subassembly 'j , '

sPM
jc / '

sPM
jτ  by 
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,
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For cPM of component i  in subassembly j , its cPM cost/time cPM

jc / cPM
jτ  can be expressed as 
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Appendix 2. Bayesian distributional 
reinforcement learning 
Kuilin Chen 
 

Introduction 
 
Deep reinforcement learning (DRL) has achieved great success in some sequential decision 
making problems, such as Atari games [7]. Although researchers are trying to expand DRL in 
practical applications, it is not straightforward to apply DRL in safety critical tasks, such as 
equipment maintenance, robot manipulation and manufacturing process. When the agent is 
learning, it must take non-optimal actions to learn more about the environment. Classic 
exploration approaches like ε-greedy rely on random actions for exploration, which could lead to 
catastrophic consequences. The purpose of this research is to develop a risk-sensitive agent that 
visits dangerous states as rarely as possible during the learning phase. 
 
A promising approach to develop a risk-sensitive agent is through distributional RL [1] since 
distributions over 𝑄-values allow risk-sensitive decision making. In classic value-based 
reinforcement learning, the value functions Q(s, a) for state-action (𝑠, 𝑎) pairs are learned, which 
describe the expectation of total discounted rewards following a prescribed policy. An optimal 
policy can be derived according to Bellman’s optimality equation by finding the action $a$ in state 
$s$ that leads to the optimal value function Q∗(s, a) [13]. Note that the total discounted rewards 
are random due to the stochasticity in environment and policy. Instead of learning a point 
estimation, distributional reinforcement learning algorithms are developed to maintain the full 
distribution of future return [5, 11, 14]. Distributional reinforcement learning is able to mitigate 
the chattering in learning caused by noisy samples combined with function approximation 
through effectively averaging the distributions [1]. In addition, the uncertainty information in the 
distribution can be used for efficient exploration and risk-sensitive learning.  
 
Existing distributional DRL methods approximate the continuous distribution of 𝑄-values with 
finite support [15]. Frequent visits to dangerous states cannot be avoided in learning phase 
because ε-greedy method is used for exploration, though certain quantile of the 𝑄-value 
distribution is used as the objective function to mitigate the risk in normal operation [3, 2]. In this 
article, we develop a Bayesian distributional DRL method, which models the distribution of 𝑄-
values by a Gaussian Process (GP) regression layer. In addition, posterior sampling is utilized to 
explore the environment efficiently, with less visits to dangerous states. The effectiveness of the 
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proposed method is demonstrated by numerical studies and can be applied to a wide range of 
safety critical tasks. 
 
Background 
 
We consider a Markov decision process (MDP) defined by a tuple (𝒮𝒮,𝒜𝒜, p, R), where 𝒮𝒮 is the state 
space , and 𝒜𝒜 is the action space. The unknown state transition probability 𝑃𝑃: 𝒮𝒮 × 𝒜𝒜 × 𝒮𝒮 →
[0, +∞) represents the probability density of the next state s′ ∈ 𝒮𝒮 given the current state s ∈ 𝒮𝒮 and 
action a ∈ 𝒜𝒜. A bounded reward R: 𝒮𝒮 × 𝒜𝒜 → [Rmin, Rmax] is emitted by the environment after each 
state transition. Under a given policy π, the expectation of future return of an action a in a state s 
is 
 

Qπ(s, a) ≡ E[R1 + γR2 + ⋯ |S0 = s, A0 = a,π] 
 
where γ ∈ [0,1] is a discount factor to trade off the importance of immediate and future rewards. 
An optimal policy is derived from the optimal value Q∗(s, a) = max

π
Qπ (s, a) by selecting the 

highest valued action in each state [13]. 
 
Bayesian deep Q-learning 
 
According to Central Limit Theorem, ∑ γt+∞

t=0 Rt follows Gaussian distribution even Rt does not 
follow Gaussian distribution. Therefore, it is reasonable to place a Gaussian process (GP) prior 
p(q) = 𝒩𝒩�0, KS,S� on Q(s, a). Each element in the kernel matrix �KS,S�i,j is computed by the 
squared exponential kernel function as follows [10] 
 

κ�si, sj� = exp�
�ϕθ(si)− ϕθ�sj��

2

−2λ
� 

 
where ϕθ is a deep neural network based feature extractor parameterized by θ and λ is the length-
scale in the squared exponential kernel that controls the smoothness of the function. In addition, 
a target neural network parameterized by θ− is maintained to provide noisy target values 𝑦𝑦. It is 
assumed that 𝑦𝑦 is obtained by adding Gaussian noise 𝒩𝒩(0,σ2) to the unobserved true value 
function Q(s, a). The mean and covariance in posterior distribution of 𝑄𝑄-value at a new state s∗ 
can be derived as follows  
 

E[q∗] = Ks∗,S�KS,S + σ2I�−1y 

cov(q∗) = Ks∗,s∗ − Ks∗,S�KS,S + σ2I�−1KS,s∗ 
 
Computing p(q∗|s∗, S, y) requires access to all previous observed states and values, which is not 
possible in modern DRL settings. Sparse GP can be developed by selecting a subset data from 
memory replay as inducing points for GPs [4, 6, 8, 12]. 
 
Instead of selecting a random action with a small probability to do exploration, action selection is 
done through posterior sampling, which naturally balances the exploitation and exploitation. We 
sample the values for state-actions pairs from their posterior distribution and select the action 
with the highest sampled values. The variance of values for visited state-action pairs are usually 
smaller. If such state-action pairs lead to dangerous next states, the means of the values are also 
lower. Therefore, it is less likely to select an action that leads to undesirable states in posterior 
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sampling. Meanwhile, the variance for unvisited state-action pairs are larger, which could be 
selected posterior sampling to encourage exploration. 
 

 
 
Results 
 
The proposed method is applied to a toy benchmark task to demonstrate its effectiveness. In this 
task, a pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. 
The agent controls the system by applying force towards right or left to the cart. The task fails 
when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from 
the center. The goal of the agent is to prevent the pole from falling. The same neural network 
architecture is used in both the proposed method and the standard DQN, except that the last layer 
in the proposed method is a Gaussian Process regression layer. The experiment is repeated 100 
times with random initial conditions. The results indicate that the proposed method is superior 
in learning efficiency in safety sensitivity. The high rewards by the proposed method is achieved 
by avoiding dangerous states (such as pole falling). 
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Conclusions 
 
A Bayesian distributional RL algorithm is proposed to do efficient and safe exploration. The 
proposed algorithm outperforms the standard DQN algorithm in terms of sample efficiency. The 
total discounted reward is modelled by a Gaussian Process regression layer in the proposed 
method. It is natural to consider Bayesian optimization techniques to further improve efficiency 
and safety in the learning phase. 
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Appendix 3. Deep partial transfer learning network: a 
method to selectively transfer diagnostic knowledge 
across related machines 
Bin Yang, Chi-Guhn Lee, Yaguo Lei, Naipeng Li 

Introduction 
 
Many of the recent successes of machine learning have been driven by deep learning, and 
intelligent fault diagnosis is no exception. Deep learning-based diagnostic models achieve 
superior performance to traditional approaches. However, the reliable deep learning-based 
models are obtained based on training with a large amount of labeled data, which is often 
unavailable in real-world engineering applications. As a result, many diagnostic models that 
perform strongly in laboratory settings struggle in real-world situations. 
 
Transfer learning has become a promising solution to close the gap between performance in the 
laboratory and in the real world by allowing diagnostic knowledge gained in one or more 
diagnostic tasks to be transferred to another. The tasks from which the knowledge is transferred 
out of is called the source domain, whereas the other (which the knowledge is transferred to) 
refers to the target domain. The former is where the diagnostic models can be fully trained with 
the large number of labeled data, and the latter is where the models are difficult to be trained due 
to the lack of labeled data. There are three commonly-used transfer learning approaches in 
intelligent fault diagnosis: instance-based, feature-based, and model-based approaches. Feature-
based approaches have shown the best transfer performance among the three especially for the 
tasks subject to serious discrepancy across domains, such as the scenarios to transfer diagnostic 
knowledge across machines of different yet similar types. They map data into a common feature 
space and then extract transferrable features that follow similar distributions across domains. 
Through the extracted features, diagnostic models trained with the source domain data can be 
reused on the target domain. 
 
Deep learning has been used to construct nonlinear mappings from the original data space to a 
common feature space. The learned domain-invariant features often follow different distributions 
depending on whether they are from the source domain or the target domain, but they are 
beneficial to improving performance of transfer learning-based diagnostic models. According to 
the recent literature review, the maximum mean discrepancy (MMD) serves as an effective way to 
estimate the distribution discrepancy. It has been widely concerned to help adapt the distributions 
of learned transferrable features so as to improve the performance of diagnostic models. In 
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addition, the generative adversarial network (GAN) is also considered to solve the transfer 
learning tasks about machinery fault diagnosis. 
 
A common assumption among the existing studies on deep transfer learning for diagnostic models 
is domain symmetry, which involves two requirements on the source and target domains. First, 
the target domain samples are balanced across all health states of machines. Second, the 
diagnostic knowledge required by the target domain is consistent with the source domain. In 
reality, however, such constraints are unrealistic. For the first requirement, during the operation 
of machines in engineering scenarios (the target domain), the healthy phase typically accounts for 
the majority of the entire useful life cycle, while faults are less frequently experienced. As a result, 
the collected dataset consists of massive healthy samples and insufficient faulty samples. As for 
the second requirement, some typical faults observed in the source domain may never be 
experienced in the target domain so that only partial diagnostic knowledge in the source domain 
is useful to the target domain. Such asymmetry will likely result in significant reduction in 
diagnostic performance of models. Therefore, we propose to address issues arising from the 
asymmetry across domains in the course of transferring diagnostic knowledge. 
 
We assume that the source and target domains are asymmetric with respect to their health state 
set and the degree of imbalance among available health states. Specifically, the source domain has 
sufficient labeled data with possibly balanced samples across all health states, whereas the target 
domain has unlabeled data, and its set of health states is strictly included in those of the source 
domain and the samples are possibly imbalanced across every health states. This is a realistic 
assumption since we can easily obtain desired data in the source domain to provide diagnostic 
knowledge for the target domain. For example, it is convenient to simulate the operations of an 
equipment and generate possibly complete faults exhaustively in a laboratory, and the collected 
data could follow balanced samples across all health states. Affected by the domain asymmetry, 
the diagnostic models trained in a source domain may not correctly recognize the health states of 
target domain samples. 
 
In order to achieve the aforementioned partial transfer learning task, we propose an adversarial 
network architecture-based diagnostic model with transfer capability in presence of domain 
asymmetry, which we call the deep partial transfer learning network (DPTL-Net). In DPTL-Net, 
domain-asymmetry factors are automatically learned to weight MMD-based distribution 
adaptation so that partial diagnostic knowledge can be selectively transferred. 
 
Deep partial transfer learning network 
 
The architecture of the proposed DPTL-Net is shown in Fig. 1, which includes a domain-shared 
ResNet, a domain discriminator, and an importance weighted distribution adaptation module. 
Each part is detailed as follows. 
 
Domain-shared ResNet 
 
The domain-shared RestNet has two identically configured networks for the source and target 
domains but they share the training parameters. The cross-domain samples 𝒙𝒙𝑖𝑖𝒟𝒟 = �𝒙𝒙𝑖𝑖s,𝒙𝒙𝑖𝑖t� ∈ ℜ𝑁𝑁 
are first handled by a convolutional layer through 
 

𝒙𝒙𝑖𝑖
𝒟𝒟,inp = 𝑓𝑓inp(𝒙𝒙𝑖𝑖𝒟𝒟;𝜽𝜽inp) = σr(𝒙𝒙𝑖𝑖𝒟𝒟 ∗ 𝒌𝒌inp + 𝒃𝒃inp), (1) 
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where 𝜽𝜽inp = {𝒌𝒌inp,𝒃𝒃inp} is the training parameters of the input layer, and σr(⋅) is the activation 
function of rectified linear unit (ReLU). After that, the learned transferrable features are put 
forward into a max-pooling layer and become 
 

𝒗𝒗𝑖𝑖
𝒟𝒟,inp = down(𝒙𝒙𝑖𝑖

𝒟𝒟,inp, 𝐶𝐶) (2) 
 
where 𝐶𝐶 is the coefficient to control the dimension of the output features. 
 
In order to get high-level transferrable features, the resulting features are put forward to the 
stacked residual blocks. Each residual block consists of two convolutional layers, and its output is 
calculated by the sum of features processed before and after the two convolutional layers. Such 
process is called the short connection as follows: 
 

𝒙𝒙𝑖𝑖
𝒟𝒟,𝑙𝑙 = σr�𝑓𝑓RB�𝒙𝒙𝑖𝑖

𝒟𝒟,𝑙𝑙−1;𝜽𝜽𝑙𝑙� + 𝒙𝒙𝑖𝑖
𝒟𝒟,𝑙𝑙−1�, 𝑙𝑙 = 1,2,⋯𝐿𝐿, (3) 

 
where 𝒙𝒙𝑖𝑖

𝒟𝒟,0 = 𝒗𝒗𝑖𝑖
𝒟𝒟,inp, 𝑓𝑓RB is the nonlinear mapping constructed by each residual block, 𝜽𝜽𝑙𝑙 is the 

training parameters in the 𝑙𝑙th residual block. 
 
The features output from stacked residual blocks are processed by a max-pooling layer again, and 
then they are mapped into the source domain label space by the fully-connected network 
including three layers. The layer F1 directly flattens the high-level features as one dimensional 
vectors. The output of the hidden layer F2 represents the highest-level features before 
classification. The output layer F3 includes |𝒴𝒴s| neurons, which predict the health states of 
transferrable features by using the Softmax function. The nonlinear mapping of the fully-
connected layers can be expressed as follows: 
 

𝑃𝑃(𝑦𝑦�𝑖𝑖𝒟𝒟 = 𝑗𝑗) = 𝑓𝑓FC�𝒗𝒗𝑖𝑖
𝒟𝒟,𝐿𝐿;𝜽𝜽FC�, (4) 

 
where 𝑃𝑃(𝑦𝑦�𝑖𝑖𝒟𝒟 = 𝑗𝑗) is the probability of the input 𝑖𝑖th features belonging to the 𝑗𝑗th health state, 𝒗𝒗𝑖𝑖

𝒟𝒟,𝐿𝐿 
is the flattened features in the layer F1, and 𝜽𝜽FC represents the training parameters of the fully-

 
Figure 1. Architecture of proposed DPTL-Net (dotted lines show error back 
propagation). 
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connected layers. Due to the lack of sample labels in the target domain, the domain-shared ResNet 
is trained by using the cross-entropy loss of the source domain samples, which is shown as follows: 
 

ℒc = −
1
𝐶𝐶s
��𝑰𝑰(𝑦𝑦𝑖𝑖s = 𝑗𝑗) log𝑃𝑃(𝑦𝑦�𝑖𝑖s)

𝑘𝑘

𝑗𝑗=1

𝑛𝑛s

𝑖𝑖=1

, (5) 

 
where 𝑰𝑰(⋅) is the indicator function. 
 
Domain discriminator 
 
The domain discriminator is performed by a three-layer perceptron. It maps the high-level 
features of the layer F2 into the domain label space. The output of the domain discriminator can 
be expressed as 
 

𝑥𝑥𝑖𝑖
𝒟𝒟,Adv3 = 𝑓𝑓adv(𝒙𝒙𝑖𝑖

𝒟𝒟,F2;𝜽𝜽adv), (6) 
 
where 𝑓𝑓adv:𝒙𝒙𝑖𝑖

𝒟𝒟,F2 ↦ Ω is a nonlinear mapping from feature space to the domain label space Ω, and 
𝜽𝜽adv is the training parameters. The discriminator includes two hidden layers, i.e., Adv1 and Adv2, 
and the output layer Adv3 lacks the activation function. The Wasserstein loss below is maximized 
to train the domain discriminator. 
 

ℒadv =
1
𝐶𝐶s
�𝑥𝑥𝑖𝑖

s,Adv3

𝑛𝑛s

𝑖𝑖=1

−
1
𝐶𝐶t
�𝑥𝑥𝑗𝑗

t,Adv3

𝑛𝑛t

𝑗𝑗=1

. (7) 

 
After each iteration to train the domain discriminator, the domain-asymmetry factors are 
generated for the source domain samples, and they are calculated as follows: 
 

𝒲𝒲𝑖𝑖
𝑠𝑠 =

1 − σs �𝑥𝑥𝑖𝑖
s,Adv3�

1 𝐶𝐶s⁄ ⋅ ∑ �1 − σs �𝑥𝑥𝑖𝑖
s,Adv3��𝑛𝑛s

𝑖𝑖=1

, (8) 

 
where σs(⋅) is the Sigmoid function. The factors are further put forward to weight PK-MMD in the 
distribution adaptation module. 
 
Importance weighted distribution adaptation module 
 
The domain-asymmetry factor weighted PK-MMD is used to estimate the distribution 
discrepancy of the learned transferrable features in the layer F2 (the highest feature layer apart 
from the layer F3 for classification) when the transfer learning tasks are subject to the domain 
asymmetry. The distribution discrepancy of learned transferrable features are corrected by using 
the following loss function: 
 

ℒDA = 𝐷𝐷Pℋ2 �𝓦𝓦𝑠𝑠𝑋𝑋s,F2 ,𝑋𝑋t,F2�. (9) 
 
where 𝑋𝑋s,F2 and 𝑋𝑋t,F2 are respectively the learned transferrable features of the batch-size samples 
in the layer F2, and 𝓦𝓦𝑠𝑠 = {𝒲𝒲𝑖𝑖

𝑠𝑠|𝑖𝑖 = 1,2,⋯𝐶𝐶s} is the domain-asymmetry factors. 
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Training process 
 
Different from the training of the standard WGAN, DPTL-Net individually maximizes the 
Wasserstein loss to train the domain discriminator, which generates factors to estimate the 
domain asymmetry of transferrable features during the distribution adaptation process. WGAN 
essentially corrects the Wasserstein distance of the transferrable features when the gradients of 
the Wasserstein loss are reversed to propagate toward the domain-shared ResNet In such 
distribution adaptation process, it is noted that the source domain samples are not weighted, 
which will result in contradictory effects with the importance weighted distribution adaptation 
module. Therefore, the gradients of the Wasserstein loss do not propagate to update the training 
parameters of the domain-shared ResNet in this article. The training of DPTL-Net adopts the 
commonly-used min-max strategy (two steps) in the standard GAN. In the first step, the 
discriminator is trained to generate domain-asymmetry factors for source domain samples. 
 

max
𝜽𝜽adv

   ℒadv. (10) 
 
It is noted that Eq. (10) trains the domain discriminator by maximizing the Wasserstein loss of 
the outputs. According to the basic principle of WGAN, the training parameters 𝜽𝜽adv must be 
subject to the K-Lipschitz continuity, otherwise the exploding gradients will result in an instable 
discriminator and further forward incorrect factors to the distribution adaptation module. 
Therefore, the training parameters are truncated into the range of [−𝜉𝜉, 𝜉𝜉] after each iteration to 
update parameters. 
 
In the second step, the domain-shared ResNet is trained by simultaneously minimizing the loss 
functions shown in Eq. (5) and Eq. (9). 
 

min
𝜽𝜽

   ℒc + 𝜆𝜆 ⋅ ℒDA, (11) 
 
where 𝜽𝜽 = {𝜽𝜽inp,𝜽𝜽𝑙𝑙=1:𝐿𝐿,𝜽𝜽FC} is the training parameters of the domain-shared ResNet, and 𝜆𝜆 is the 
tradeoff parameter. The RMSProp optimization algorithm (non-momentum based algorithm) is 
used to respectively implement Eqs. (10)~(11) due to its capability in solving the instable 
optimization objective, and the training parameters of DPTL-Net are updated in turn as 
 

𝜽𝜽adv ← 𝜽𝜽adv + 𝜂𝜂 ⋅ ∇𝜽𝜽adv(ℒadv)
𝜽𝜽 ← 𝜽𝜽 − 𝜂𝜂 ⋅ ∇𝜽𝜽(ℒc + 𝜆𝜆 ⋅ ℒDA)

, (12) 

 
where 𝜂𝜂 is the learning rate. 
 
Case studies 
 
Planet gearbox dataset description 
 
The effectiveness of the proposed DPTL-Net is demonstrated on planet gearbox datasets, which 
are detailed in Table 1. 
 
The datasets A and B are collected from a drivetrain dynamic simulator rig, which includes a 
motor, a two-stage planet gearbox, a fixed-shaft gearbox, and a magnetic power brake. The motor 
power is transmitted to drive the magnetic power brake by passing through the planet gearbox 
and the fixed-shaft gearbox in turn. We respectively simulated five health states in the first stage 
of the planet gearbox including the normal (N) state, the tooth crack on the sun gear (CS), the 
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wear on the sun gear (WS), the tooth crack on the planet gear (CP), and the bearing fault of the 
planet gear (BFP). During the experiment, the datasets A and B are respectively collected under 
the motor rotating speeds of 2100 r/min and 3000 r/min with the sampling frequency of 5120 
Hz. The two datasets both contain 1000 samples, and each sample contain 2560 sampling points. 
In the dataset A, all the samples are balanced across every health states. As for the dataset B, we 
remove samples from partial faulty types and randomly select 𝑚𝑚% ∈ (0,1) faulty samples to create 
imbalanced dataset. 
 
Table 1. Details of planet gearbox datasets 
 

Datasets Health states The number of samples Working conditions 

A 

N 

1000 (200×5) 2100 r/min 
CS 
WS 
CP 
BFP 

B 

N 200 

3000 r/min 
CS 800 (Partial faulty types are missing 

and m% ∈ (0,1) faulty samples are 
randomly available.) 

WS 
CP 
BFP 

 
According to Table 1, the diagnostic knowledge contained in the dataset A (the source domain) is 
expected to be performed on the dataset B (the target domain). Affected by the different rotating 
speed of the motor, samples in the two datasets are subject to distribution discrepancy. We create 
partial transfer learning tasks shown in Table 2. The label space of the target domain is 
inconsistent with the source domain, and we randomly select 30% faulty samples to make the 
target domain dataset imbalanced. The partial transfer learning tasks T1, T2, and T3 are expected 
to demonstrate the performance of DPTL-Net as the health states of the target domain dataset are 
gradually removed. 
 
Table 2. Partial transfer learning tasks 
 

Tasks Target domain (dataset B) Source domain (dataset A) 
T1 N, WS, CP, BFP 

N, CS, WS, CP, BFP T2 N, WS, BFP 
T3 N, BFP 
Note: Randomly select 𝑚𝑚% ∈ (0,1) faulty samples to create imbalanced target domain dataset. 

 
Diagnostic results 
 
We analyze the learned domain-asymmetry factors on the given partial transfer learning tasks T1, 
T2, and T3. The learned domain-asymmetry factors for source domain samples are plotted in 
Figure 2. We also presents the number of the source and target domain samples on every health 
states, and the confusion matrix of diagnostic results. 
 
As shown in Figure 2(a), the target domain samples from the CS state belong to the outlier health 
states. Thus, the source domain samples from CS get the lowest domain-asymmetry factors. The 
average values of domain-asymmetry factors for source domain samples in the shared health 
states (N, WS, CP, BFP) follow the number of target domain samples on each health state. For 
example, there are massive N samples in the target domain, and thus the source domain samples 
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from the normal condition are weighted by the larger asymmetry factors than other states. By 
weighting source domain samples with the automatically learned domain-asymmetry factors, the 
proposed DPTL-Net is able to correctly recognize the health states of target domain samples. 
Similar results can be observed in Figure 2(b) and Figure 2(c). Comparing the learned domain-
asymmetry factors respectively on the tasks T1, T2, and T3, we can find the adaptively adjusted 
values on each health state. The factors for the source domain samples in N are increased when 
the health states in the target domain are gradually removed because of the changing ratio of the 
number of target domain samples across the shared health states. 
 
Figure 2. Domain-asymmetry factors and confusion matrix on partial transfer 
learning tasks: (a) T1, (b) T2, (c) T3. 
 

 

 

 
 
Conclusions 
 
We proposed an adversarial network-based diagnostic model named DPTL-Net to overcome the 
domain asymmetry issues in transfer learning-based fault diagnosis of machines. At the core of 
the DPTL-Net, domain-asymmetry factors are automatically learned by individually training a 
domain discriminator with Wasserstein loss, and then they are used to weight the PK-MMD-based 
distribution adaptation module. The factors are able to distinguish transferrable features from 
outlier health states and block their contributions from influencing distribution adaptation. Based 
on the theoretical analysis and experiments, the factors for source domain samples can be 
adaptively adjusted following the change of imbalanced degrees of target domain samples. The 
PK-MMD-based distribution adaptation module is weighted with such factors to selectively 
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enhance similarity between target domain samples and partial source domain samples from the 
shared health states. Based on the comparison results, DPTL-Net shows superior performance to 
other transfer learning-based diagnostic models in the presence of domain asymmetry. 
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Appendix 4. Applying object detection to security 
scanned images 
Shashank Saurav, Anmol Garg 
 

Objective 
 
The objective in this project is to automate the security scan procedure of baggage items. Current 
systems are designed to manually check for each scanned item using X-ray scanning equipment. 
This baggage check is usually required at airports or other transportation hubs such as bus or 
train stations where security of passengers and property is of high importance. The key idea here 
is to eliminate this manual check and replace it with an automated algorithm through Machine 
Learning that would detect any banned/restricted items on the fly. This will help save costs 
directed towards the manual checking and minimize any human mistakes. 
 
Introduction 
 
One of the first Object Detection methods on images used sliding window (J. Lee, 2017 ) which 
involved taking multiple crops of the input image and then each crop is fed to a deep 
Convolutional Neural Network (CNN) to make a classification decision. The crop dimensions, 
shape would be an issue as the object may appear at any location with any shape and size. This 
limitation was alleviated by applying several crop sizes and dimensions and running them all 
through the CNN but this posed a time and computation cost issue. 
 
Another approach implemented is Regional – Convolutional Neural Network (R-CNN), wherein 
region proposal networks to capture blobby (feature-rich) regions and then spits out a finite 
number of boxes where an object can be potentially present. These limited region proposals are 
then fed to a CNN for object classification. (Malik, 2013) However, this still needed that finite 
number of boxes to be fed to CNN for processing rendering redundant computations. Variants of 
R-CNN such as Fast R-CNN & Faster R-CNN (Sun, 2015) (Farhadi, 2018)have come up since then. 
Now current state-of-the-art strategies such as You Only Look Once (Yolo) have entered the 
domain and dominated the Object Detection section of Computer Vision with incremental 
improvements in different versions. Instead of doing multiple forward propagations of proposed 
regions on deep CNN, Yolo makes grid cells of the image and then makes proposed predictions 
on each grid cell. This way, only a single forward propagation of the image through a deep Neural 
Network is needed which saves computation cost and time. Thus, the name, You Only Look Once. 
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For now, we plan to implement Yolov3 (3rd incremental version of Yolo) (Farhadi, 2018)on the 
baggage scanning images to see if the results match the requirements. 
 
Dataset 
 
We were given a dataset with images of banned items. The current subset has the following classes 
and count: 
 

Class Description Class ID Original Count of Images 
Handgun 0 550 + 500 (dataset 3) 
Kitchen Knife 1 50 + 500 (dataset 3) 
Cutter Knife 2 50 
Hard Disk 3 50 
USB 4 50 
Hard Disk – 2 5 50 
Kitchen Knife – 2 6 50 
Shuriken 7 50 
Battery 8 50 
Battery – 2 9 50 
Phone 10 50 

 
Against every image, there is a true label and boundary box attributes in the form of a text file. 
The true label denotes the ID of that class and the attributes denote the dimensions of boundary 
box (which are the dimensions at which the object is present). The dimensions are normalized to 
the size of the image and the centre coordinate is calculated from the top-left corner of the image. 
The first two dimensions denote the centre (x & y coordinate) of the boundary box. The other two 
attributes are the height & width of the bounding box. 
 
Data augmentation 
 
As the image count for some classes is 50 which is a bit on the low end, we applied data 
augmentation techniques to increase the image count. This would further avoid overfitting. Also, 
augmentation techniques are limited as the dimensions of the boundary box of the image should 
be in line with the approach of augmentation. 
 
1. Image Flipping: 
The images are flipped each horizontally, vertically, and both horizontally and vertically. The 
centre coordinates are calculated according to the type of flipping. This technique provides 3 times 
the number of images. Thus, now we have 200 count of images for 50 count of original images. 
 
2. Image Rotation: 
Each of the 200 count of flipped images is rotated clockwise by 90, 180 & 270 degrees. The centre 
coordinate as well as height and width are adjusted according to the degree of rotation. This again 
gives us 3 times the number of images. Thus, we get 800 images for 200 flipped images. 
 
The final count of images is now observed below: 
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Class 
Description 

Class ID Original Count of 
Images 

Original & Augmented Count of 
Images 

Handgun 0 550 + 500 (dataset 3) 8800 + 500(dataset 3) 
Kitchen Knife 1 50 + 500 (dataset 3) 800 + 500 (dataset 3) 
Cutter Knife 2 50 800 
Hard Disk 3 50 800 
USB 4 50 800 
Hard Disk – 2 5 50 800 
Kitchen Knife – 2 6 50 800 
Shuriken 7 50 800 
Battery 8 50 800 
Battery – 2 9 50 800 
Phone 10 50 800 

 
Yolov3 architecture 
 
Applying Yolo, it is known that it uses features learned by a deep CNN to detect any object. It uses 
only convolutional layers thus making it a fully connected network (FCN).  The architecture has 
75 convolutional layers apart from skip connection & upsampling layers. Pooling is not 
implemented and a stride of 2 is applied to downsample the feature maps. 
 
The features learned from the CNN are passed onto a classifier/regressor that will make the 
detection and a final prediction. Each prediction will have an 8x1 dimension with information on 
image ID boundary box location & dimensions, objectness score, predicted class and its 
probability. 
 

𝐹𝐹𝑖𝑖𝐶𝐶𝑎𝑎𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖𝑃𝑃𝑡𝑡𝑖𝑖𝐶𝐶𝐶𝐶 =  [𝑖𝑖𝑚𝑚𝑔𝑔_𝑖𝑖𝑑𝑑   𝑥𝑥1 𝑦𝑦1 𝑥𝑥2    𝑦𝑦2 𝑃𝑃0 𝑖𝑖𝑑𝑑     𝑃𝑃𝑖𝑖𝑖𝑖] 
 
Img_id : the id of the image where the prediction is made. 
X1, y1 : top left coordinate of the boundary box measured from top-left corner of image 
X2, y2 : bottom right coordinate of the boundary box measured from top-left corner of image 
P0 : Probability of detecting an object (Object Probability) 
Id : Id of the class detected 
P_id : Confidence level of the class detected 
 
The prediction methodology is described below. Yolov3 makes a prediction on three different 
scales i.e. feature maps of three different sizes. For an input of 416x416 image, the strides of 32, 
16 & 8 are implemented to have detections on feature maps of size 13x13, 26x26 & 52x52 
respectively. 
 
The CNN will downsample the input image until a yolo layer i.e. a detection layer is reached where 
it will make detections using a stride of 32 (13x13 feature map). The layers are then upsampled by 
a factor of 2 and concatenated with feature maps of a previous layer with the same size. Now, a 
detection is made with stride of 16 (26x26 feature map) and the upsampling procedure is 
implemented again to make detection with a stride of 8 (52x52 feature map) 
 
The detection in yolo layer is made using anchors. The purpose of having anchors is to make 
multiple detections on a single image that may have overlapping objects at or around the same 
location. Typically, 3 anchors are used so that we do not expect more than 3 objects overlapping 
in any image.  
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The 3 anchor boxes will thus make three boundary box predictions for each grid in the feature 
map. Hence, for a feature map of size 13x13, the yolo layer will generate 13x13x3 boundary boxes 
(bbox) i.e. 507 bbox. Therefore, for all three scales of feature maps, we get (13x13 + 26x26 + 
52x52) x 3 = 10647 bbox. 
 
Corresponding to each bbox is an output vector of size (5+C) where C represents the number of 
classes. In our case, we have 11 classes and so C will be 11. The first two values (tx & ty) in the 
vector suggest the centre of the bbox measured from the top-left corner of the grid cell. Next two 
values suggest the height and width (th & tw) of the bbox. Then, we have the objectness score 
which makes up the first five values of the vector. The next C values represent the score that the 
detected object belongs to each of the C classes. 
 
To get the actual bbox dimensions pertaining to the image, the above dimensional values are 
scaled & normalized. 

𝑏𝑏𝑥𝑥 =  𝜎𝜎(𝑡𝑡𝑥𝑥) + 𝑃𝑃𝑥𝑥 
𝑏𝑏𝑦𝑦 =  𝜎𝜎�𝑡𝑡𝑦𝑦� + 𝑃𝑃𝑦𝑦 
𝑏𝑏𝑤𝑤 =  𝑃𝑃𝑤𝑤 ∗ 𝑃𝑃𝑡𝑡𝑤𝑤 
𝑏𝑏ℎ =  𝑃𝑃ℎ ∗ 𝑃𝑃𝑡𝑡ℎ 

 
where cx & cy are the coordinates of the top-left corner of the grid cell from the top-left corner of 
the image. 𝜎𝜎(𝑥𝑥) is the sigmoid operation performed to normalize the coordinates from the top-
left corner of the grid cell. 𝑃𝑃𝑤𝑤 & 𝑃𝑃ℎ are the predefined width & height of the anchor box pertaining 
to that scale. The width & height are thus log-transformed to get width and height of the bbox 
relative to the image. 
 
Using the above four parameters, the top-left and bottom-right coordinates of the bbox are 
calculated which is described in the final prediction matrix above. The sigmoid operation is 
applied on objectness score and class scores to get probability of having an object and confidence 
level of each class. 
 
Now, we have an output matrix of size (B x 10647 x (5+c)) where B represents the batch size. It is 
now wished to have a single bbox for each object in the image i.e. the number of detections must 
be reduced from 10647 to 1. This is done using Object Confidence Filtration and Non-maximum 
suppression techniques. 
 
For every object in an image, we now have 1x(5+C) i.e. 1x16 vector which will be further reduced 
to 1x8. The maximum confidence level out of the C classes & its id is appended to the first 5 
attributes which are the bbox dimensions & objectness probability. Then, the image-id that is 
being worked on is appended to get the final prediction as shown above. 
 
This concludes the working architecture of Yolov3. Let us see the implementation & methodology 
in the dataset. 
 
Proposed methodology 
 
The following methodology is proposed for the custom dataset. 
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The testing will be based on the Recall metric denoting the percentage of items detected out of 
how many should have been detected. This metric is chosen as it is not advisable for a banned 
item to not be detected. 
 
Current progress 
 
To check Yolov3 accuracy, the training dataset (700 images of each class) was fed to a pre-built 
Yolov3 model with the option to train on a customized dataset. The results were exceedingly good, 
with high overall accuracy and recall values (average precision 95%; average recall 97%). Results 
for test set (100 images of each class (except Handgun) + 8100 images of Handgun) are shown 
below.  
 

Class Precision 
Handgun 98.17 
Kitchen Knife 92.78 
Cutter Knife 92.64 
Hard Disk 97.29 
USB 71.57 
Hard Disk 2 99.97 
Kitchen Knife 2 97.23 
Shuriken 98.10 
Battery 99.96 
Battery 2 99.57 
Phone 88.45 

 

Testing the Model

Testing the trained model on test split

Training & Validation through Transfer Learning

Fine-tuning the weights of last few layers to improve recall

Yolov3 - Pre-trained Model

Download pre-trained weights (on Coco dataset) to train on custom dataset

Train - Validation - Test Split

Splitting Image Dataset into 80:10:10 ratio. Preserving Equal Count of Images for each Class in Training 

Data Pre-Processing

Image Augmentation - Flipping & Rotating Image Resizing & Padding to 416x416 size
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Since the pre-build model was a bit complex with limited flexibility in modification of code, we 
decided to reproduce the Yolov3 architecture model that could give out the needed metrics (such 
as recall score for each class) as well as have the flexibility of deployment as per user requirements. 
Until now, we have reproduced a working Yolov3 model using pre-trained weights that can predict 
all classes in the Coco dataset as well as give out recall for a particular class.  
 
The following are our findings on test images of 5 classes of the Coco dataset:  
 

 Recall Score for class cow = 0.9 
 Recall Score for class elephant = 0.93 
 Recall Score for class aeroplane = 0.934 
 Recall Score for class bird = 1.0 
 Recall Score for class bear = 0.976 

 
Way forward 
 
Now, we plan to train the built model with the scanned images of baggage dataset and fine tune it 
to get maximum recall scores. 
 
For deployment in real-world scenario, we propose a live feed of the scanning machine being fed 
to the model that would detect all banned items as the baggage moves on the conveyor belt. 
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The current subset of dataset contains images with only one banned item per image; therefore to 
tackle the case of overlapping and/or multiple banned items in baggage, we advise training the 
model on a dataset with these cases. 
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Appendix 5. Object detection security scan 
Syed Hamdan Mustafa, Aakash Iyer 
 

Problem statement 
 
Security concerns have made air travel a pretty invasive affair, but the security process is actually 
designed to protect the passengers. It is critical to the safety of all who fly that hold luggage, hand 
luggage and each passenger’s physical person are all checked by scanners to ensure compliance 
with restrictions. Hence, X-ray scanning and analysis of baggage is an essential aspect of airport 
security. Most carry-on baggage is scanned manually which increases the security risk of human 
error and exacerbates the already packed flight schedules. Inclusion of automation is one of the 
ways to optimize the current scenario. The project aims to utilize deep learning methodologies to 
automate baggage scanning and to develop features to improve the security condition. This 
approach is focussed on object classification rather than object detection.  

Literature review 

a) Very Deep Convolutional Networks for Large-scale Image Recognition (Karen Simonyan & 
Andrew Zisserman, 2015) 

The paper discusses the effect of convolutional network depth on its accuracy in the large-
scale image recognition setting. Here, the authors discuss the evaluation of networks of 
increasing depth using an architecture consisting of very small convolutional filters showed 
significant improvement on prior-art configurations achieved by pushing the depth to 16-19 
weight layers.  

 
b) Using Deep Convolutional Neural Network Architectures for Object Classification and 

Detection Within X-Ray Baggage Security Imagery (Samet Akcay, Mikolaj E. Kundegorski, 
Chris G. Willcocks, and Toby P. Breckon, 2018) 
 
The authors perform a comparative analysis of Deep Neural Network Architectures and 
techniques to show that object localization strategies cope well with cluttered X-ray security 
imagery to overcome redundancies faced by classification techniques. The authors consider 
various CNN approaches including traditional CNN, transfer learning, CNN+SVM, and CNN 
driven detection paradigms such as SW-CNN, F-RCNNs, R-CNN, and YOLOv2. 
 

Other valuable references are noted in the final section of the report. 
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Proposed methodology 
 
The methodology followed for the project is discussed using the different aspects. The overall 
approach is summarized below: 
 

Figure 1. Project methodology pipeline 
 

 
 

Dataset 
 
To implement automation in object detection in X-ray scans of baggage, it is proposed to utilize 
an image classification approach using neural networks for identifying malicious items. In the 
current work, a dataset containing 2,050 images is used containing different items for 
identification. The breakdown of the dataset is as follows: 

 
Table 10. Dataset breakdown 

 
Description Count 

Handgun 500 
Airgun 50 
Other firearms 500 
Kitchen Knife 100 
Cutter Knife 50 
Other Knife 500 
Battery 100 
Hard Disk 100 
Phone 50 
Shuriken 50 

 
To ease the classification, all gun images were combined as Handgun class (1,050 images) and all 
knife images were also combined as Knife class (650 images), giving a total of 7 classes for the 
multi-class classification problem. Stratification was used to deal with the imbalanced dataset; 
this ensures that the ratio of each class in the training, validation and test set is the same for non-
biased classification. 
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Role of augmentation 
 
Due to the low number of images, using a neural network may lead to poor generalization and 
underfitting. In addition, the robustness of the model could not be validated with low data. The 
idea behind image augmentation is that altered versions of existing images are generated using 
the existing image set via image transformation (crop, resize, rotation, etc.) that aid in alleviating 
the issue of small dataset by producing extra images. It is important to note that the number of 
images produced is a hyperparameter and can be tuned for the best results. 
 
Transfer learning 
 
In transfer learning, the knowledge of an already trained machine learning model is applied to a 
different but related problem. The general idea is to use the knowledge a model has learned from 
a task with a lot of available labeled training data in a new task that does not have much data. 
Inductive transfer techniques utilize the inductive biases of the source task to assist the target 
task. There are two types of models utilized: 
 
1. Feature extraction: The key idea here is to just leverage the pre-trained model’s weighted 
layers to extract features but not to update the weights of the model’s layers during training with 
new data for the new task. 
 
2. Fine tuning: This is a more involved technique, where the final layer is not replaced, and 
selectively previous layers are also retrained.  
 
Importance of recall 
 
Recall is important when ensuring the capture of positive cases as the cost of missing a positive is 
more problematic than the cost of including a negative. In this project, identification of hazardous 
item is of prime importance for ensuring security and safety. 
 
Comparative benchmark and early warning system 
 
The results of the models are compared with professional models widely used in industrial 
solutions. To that end, Microsoft Azure’s Custom Vision Model is chosen as a benchmark.  
 
The second objective is to develop an early warning system to the user indicating the identification 
of malicious objects in baggage and thus simulating an alarm system embedded with the solution. 
This would ideally be done using a dataset containing non-malicious items (i.e. safe baggage); the 
model could then be put to test to understand if it can directly detect malicious items without the 
need for further classification into the aforementioned 7 classes. 
 
Model summary 
 
There are two types of models used in the project. The professional model serves as a benchmark. 
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Public models 
 
Basic CNN: CNN model with three convolutional layers, coupled with max pooling for auto-
extraction of features from the images and down sampling the output convolution feature maps. 
 

 
Figure 2: Basic CNN architecture 

 
CNN with regularization: Here, the base CNN model is improved by adding in one more 
convolution layer, another dense hidden layer.  Besides this, dropout of 0.3 is added after each 
hidden dense layer to enable regularization. Basically, dropout is a powerful method of 
regularizing in deep neural nets. It can be applied separately to both the input layers and the 
hidden layers. Dropout randomly masks the outputs of a fraction of units from a layer by setting 
their output to zero (in this case, it is 30% of the units in the dense layers). 
 
CNN with image augmentation: Image augmentation is the process of taking in existing 
images from the training dataset and applying image transformation operations to them, such as 
rotation, shearing, translation, zooming, and so on, to produce new, altered versions of existing 
images. In this case, there are different approaches utilized for pursuing data augmentation: 
 

i. Providing altered image in each epoch 
• Here, in each epoch, the number of images entering the model were kept the same, but 
each epoch had the altered images for training the model. Keras’ ImageDataGenerator is used for 
this approach. 
• The drawbacks of this approach are in increased processing time due to dependency on 
increasing the number of epochs for efficient image augmentation and existence of imbalance in 
the dataset. 
 

ii. Increasing image dataset by creating augmented images 
• Here, the images are first augmented and then the new larger dataset is fed to the model. 
For this approach, skimage from sklearn is used. 
• The benefit of this approach is in the increased control over what data are fed. As a result, 
images can be augmented per class and oversampling can be done for overcoming imbalanced 
dataset.  
• The drawback is in determining the right number of augmented images as high number of 
images can lead to duplicate images. 
 
The second approach produced better results for this project. 
 
CNN + transfer learning with VGG-16: VGG-16 model is a 16-layer network built on the 
ImageNet database, which is built for the purpose of image recognition and classification. Key 
idea here in Transfer Learning is to leverage the pre-trained model’s weighted layers to extract 
features but not to update the weights of the model’s layers during training with new data for the 
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new task. Leveraging the convolution blocks of the VGG-16 model and then flattening the final 
output so that it can feed into the own dense layers for the classifier. 
 

Figure 3. VGG-16 architecture 
 

 
 
CNN + transfer learning with VGG-19: Just like VGG-16, VGG-19 is a trained Convolutional 
Neural Network, from Visual Geometry Group, Department of Engineering Science, University of 
Oxford. The number 19 stands for the number of layers with trainable weights. 16 Convolutional 
layers and 3 Fully Connected layer. There are various variants tried here by training different 
number of layers, the best results for this model is presented here. 
 

Figure 4. VGG-19 architecture 

 
 
CNN + transfer learning with inception V3: The pre-trained Inception-v3 model achieves 
state-of-the-art accuracy for recognizing general objects with 1000 classes, like "Zebra", 
"Dalmatian", and "Dishwasher". The model extracts general features from input images in the 
first part and classifies them based on those features in the second part. 
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Figure 5. Google Inception v3 architecture 
 
 

 
 
Professional Model 
 
Microsoft Azure Custom Vision: Microsoft Azure’s Custom Vision is a customizable 
embedded computed vision technology for specific domains. As one of the leading Data Science 
solution, Custom Vision was chosen as a benchmark in order to have an anchor to perform 
accurate comparitive analysis to industrial private model. 
 
Model results and discussion 
 
This section discusses the results for the models. Models were evaluated using the following 
metrics: 
 

i. Accuracy 
ii. Precision (macro-average)1 

iii. Recall (macro-average) 
iv. F1 Score (macro-average) 

 
They are all important measures; however, recall is understood to be the vital one since a major 
shortcoming of this model would be the inability to classify the malicious items. It could lead to a 
catastrophic incident. 
 
It is important to note that there are different variants of the models. This report comprises only 
the best variant of each model. The different variants are created by training different layers of 
the DL model, for example. The results are summarized in the tables below. 
 
The second part of the project focussed on increasing the recall by modifying the architecture of 
the DL model and the augmentation code. 
 
                                                           
1 Macro-average will compute the metric independently for each class and then take the average 
(hence treating all classes equally). 
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The results are presented in two ways. The first are the models trained with the raw dataset (no 
augmentation). There is a total of 2,050 images as mentioned earlier. 
 

Table 11. Model results without augmentation 
 

Sr. 
No. Approach Test 

Accuracy Precision Recall F1 Score 

1 Basic CNN 0.91 0.81 0.74 0.76 

2 CNN with Regularization 0.94 0.88 0.81 0.82 

3 VGG-16 (as a feature 
extractor) 0.94 0.90 0.89 0.89 

4 VGG-16 with Fine-Tuning 0.97 0.93 0.94 0.93 

5 VGG-19 0.95 0.90 0.91 0.90 

6 Google Inception v3 0.98 0.94 0.94 0.93 

 
Google Inception v3 seems to be the best model with the non-augmented dataset. It takes ~1 hour 
to train and evaluate these models. 
 
The second part includes training the models with an augmented dataset. The images are resized, 
rotated (clockwise and anti-clockwise), flipped (horizontally and vertically) and noise is added. 
There is a total of 10,500 images (1,500 images per class). 
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Table 12. Model results with augmentation (no blurred images) 
 

Sr. 
No. Approach Test 

Accuracy Precision Recall F1 Score 

1 Basic CNN with Augmented 
data 0.92 0.92 0.92 0.92 

2 CNN with regularization and 
augmented data 0.95 0.95 0.95 0.95 

3 
VGG-16 (as a feature 

extractor) with augmented 
data 

0.95 0.96 0.95 0.95 

Sr. 
No. Approach Test 

Accuracy Precision Recall F1 Score 

4 VGG-16 with Fine-Tuning 
with Augmented data 0.99 0.99 0.99 0.99 

5 VGG-19 with augmented data 0.99 0.99 0.99 0.99 

6 Google Inception v3 with 
augmented data 0.99 0.99 0.99 0.99 

 
There are a lot of candidates for the best models: VGG-16, VGG-19, and Google Inception v3. 
However, it takes ~5 hours to train the VGG-16 and Google Inception v3 models whereas it takes 
~8 hours to train the VGG-19 model.  
 
The improved results with the augmented dataset were noted primarily after removing the blurred 
images. This could be a possible shortcoming of the model which could require the baggage to be 
stopped during the scan. This could lead to an issue since it would take a considerably larger 
amount of time to scan the bags. The results with adding blurred images to the dataset are as 
follows (for reference). 
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Table 13. Model results with augmentation (blurred images included) 
 

Sr. 
No. Approach Test 

Accuracy Precision Recall F1 Score 

1 CNN with Augmented data 0.88 0.93 0.87 0.89 

2 CNN with regularization on 
augmented data 0.90 0.95 0.89 0.91 

3 VGG-16 (as a feature extractor) 
with augmented data 0.89 0.94 0.88 0.90 

4 VGG-16 with Fine-Tuning with 
Augmented data 0.91 0.96 0.90 0.92 

5 VGG-19 with augmented data 0.91 0.96 0.89 0.92 

6 Google Inception v3 with 
augmented data 0.91 0.96 0.90 0.92 

 
The evaluated metrics decrease when the blurred images are included.  
 
As mentioned in Sections 3 and 4, the model results are also compared to a professional model, 
i.e., Microsoft Azure’s Custom Vision. This is a proprietary software and hence there is no 
information available regarding the models used. The comparison is done with our best model 
(which is using the augmented dataset). Custom Vision gives the following results when it is done 
using the augmented dataset. 
 

Figure 6. Custom vision results with augmented dataset (including blurred 
images) 
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It can be noted that our models perform relatively better when the blurred images are removed. 
However, there is room for improvement when it comes to the blurred images. 
 
Future work 
 
There is a considerable amount of work to be done in this project since there are other teams who 
are working on it using different approaches. Another team is using an object detection approach 
and using models such as YOLO and R-CNN. The different approaches/teams are supposed to 
collaborate and produce a consistent format of model results for comparison and records.  
 
As for the project itself, the following steps are ensuring that the models are more robust especially 
when it comes to blurred images. It was found to be a particular issue during the model testing. 
The Custom Vision (benchmark) results indicate that better results are possible when the size of 
dataset is large and contains blurred images (i.e. using augmentation). There are various other 
transfer learning models that could be utilized such as AlexNet and ResNet. There is also an 
approach utilizing Support Vector Machine (SVM) classifier, combined with CNN. The aim for the 
best model is to have the highest possible recall without compromising significantly on the other 
metrics and have a relatively lower training/evaluation runtime. 
 
Another particular focus of the project going forward is introducing an alarm system that would 
alert the user if the particular object being scanned is malicious. Since there are no images 
available for non-malicious baggage; this will be done by considering some of the classes as 
malicious whereas the other classes as non-malicious. This is not an ideal solution, but it will be 
used as a way to develop the alarm system. 
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Appendix 6. Generic real option value analysis 
under swing option assumption 
Yushi Wang, Ruiqi Yang, Yige Zhang 

Problem statement 
 
[1] Real options are decisions a company’s manager can make to expand, curtail, change, delay, 
or terminate projects based on the economic circumstance, technology changes, or market 
conditions. It is referred to as “real” because it typically references projects involving a physical 
asset or tangible asset such as machinery and buildings instead of a financial instrument. 
Conventional ways of decision making such as return on investment (ROI), net present value 
(NPV) and cost-benefit analysis. Such methods ignore the outcome uncertainty, the choice of 
investment timing and irreversibility of resource commitment. By applying real options value 
analysis (ROV), managers can estimate the opportunity cost of continuing or abandoning a 
project or other strategies and make decisions accordingly, which gives companies flexibility on 
time and capital and potential benefits when they make future decisions. 
 
[2] A swing option is a type of contract used by investors mostly in energy markets that lets the 
option holder buy a predetermined quantity of energy at a predetermined price while retaining a 
certain degree of flexibility in the amount purchased and the price paid. In this project, we 
references the [9] structure of the swing option contract and formulate our project as a 
procurement problem under swing option framework, to be more specific, we will consider: (1) 
Local Constraints:  the least and most number of tangible asset an option holder can purchase per 
unit time period; (2) Global Constraints: (i) the least number of tangible assets should purchase, 
(ii) the most number of tangible asset could purchase during total time horizon, and (iii) budget;  
(3) Penalty: if the global constraints are not fulfilled, a terminal penalty will be added up.  
 
Hypothesis 
 
Since there are no data available for this project, the work depends on simulations. We assume 
that the asset’s value follows the Merton’s Jump Diffusion process (MJD), with constant 
depreciation rate and negative log jump size. The constant depreciation rate indicates that the 
general trend of asset’s value is decreasing as time goes on. The jump size captures the situation 
when there are crucial events happen, such as technology change or war, which will change the 
asset’s value significantly. 
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Problem setup 
 
Merton’s Jump Diffusion Model 
 
Following Zhang, J., & Zhao, H. (2006)[3], we assume the object that one is interested to purchase 
follows a jump diffusion process and we use the same notation except write 𝑃𝑃𝑡𝑡 as the price.  
 

𝑑𝑑𝑃𝑃𝑡𝑡  =  (𝜇𝜇 − 𝐷𝐷 − 𝜆𝜆𝜆𝜆(𝑃𝑃𝑥𝑥 − 1))𝑃𝑃𝑡𝑡𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑃𝑃𝑡𝑡𝑑𝑑𝑀𝑀𝑡𝑡 + (𝑃𝑃𝑥𝑥 − 1)𝑃𝑃𝑡𝑡𝑑𝑑𝑁𝑁𝑡𝑡 
                      

where 𝜇𝜇 and 𝜎𝜎 represent the drift and volatility of the process. 𝜆𝜆 is defined as a constant intensity 
for the jump process. Besides that, random variable 𝑥𝑥 is the jump size and it follows a normal 
distribution. 𝑀𝑀𝑡𝑡  and 𝑁𝑁𝑡𝑡 are Brownie motion and Poisson process respectively. 
 
Amin  (1993) [4] introduced a methodology which is analogous to CRR model, to discretize the 
MJD process with guaranteed week convergence to it’s continuous time formulation that 
suggested by Merton (1976). The author firstly defined the drift of the logarithm of the asset’s 
price as 𝛼𝛼 = (𝜇𝜇 − 𝐷𝐷 − 0.5𝜎𝜎2  − 𝜆𝜆𝜆𝜆(𝑃𝑃𝑥𝑥  − 1)). Then for every fixed positive integer n, partition the 
trading interval [0, 𝜏𝜏] into 𝐶𝐶 subintervals of length ℎ𝑛𝑛 = 𝜏𝜏/𝐶𝐶. Furthermore, the author assume that 
𝑋𝑋𝑐𝑐(𝑡𝑡)  =  𝑙𝑙𝐶𝐶[𝑃𝑃𝑐𝑐(𝑡𝑡)/𝑃𝑃𝑐𝑐(0)]. 
 
Then the transition probability for 𝑋𝑋𝑛𝑛(𝑡𝑡 + ℎ𝑛𝑛)  −  𝑋𝑋𝑛𝑛(𝑡𝑡)  =  𝛼𝛼ℎ𝑛𝑛 + 𝑙𝑙𝜎𝜎�ℎ𝑛𝑛 ∀ 𝑙𝑙 ∈ 𝑍𝑍 will be: 
 

𝑃𝑃𝑃𝑃𝐶𝐶𝑏𝑏[𝑋𝑋𝑛𝑛(𝑡𝑡 + ℎ𝑛𝑛)  −  𝑋𝑋𝑛𝑛(𝑡𝑡)  =  𝛼𝛼ℎ𝑛𝑛 + 𝜎𝜎�ℎ𝑛𝑛]  =  𝑞𝑞𝑛𝑛 (1 − 𝜆𝜆ℎ 𝑛𝑛 ) 
          𝑃𝑃𝑃𝑃𝐶𝐶𝑏𝑏[𝑋𝑋𝑛𝑛(𝑡𝑡 + ℎ𝑛𝑛)  −  𝑋𝑋𝑛𝑛(𝑡𝑡)  =  𝛼𝛼ℎ𝑛𝑛 − 𝜎𝜎�ℎ𝑛𝑛]  =  (1 − 𝑞𝑞𝑛𝑛 )(1 − 𝜆𝜆ℎ 𝑛𝑛 ) 

𝑃𝑃𝑃𝑃𝐶𝐶𝑏𝑏[𝑋𝑋𝑛𝑛(𝑡𝑡 + ℎ𝑛𝑛)  −  𝑋𝑋𝑛𝑛(𝑡𝑡)  =  𝛼𝛼ℎ𝑛𝑛 + 𝑙𝑙𝜎𝜎�ℎ𝑛𝑛;  𝑙𝑙 ]  = 𝜆𝜆ℎ𝑛𝑛 𝑑𝑑𝑁𝑁𝑛𝑛(𝑙𝑙) 
 
where 
 
𝑑𝑑𝑁𝑁𝑛𝑛(𝑙𝑙) = 𝑁𝑁(𝛼𝛼ℎ𝑛𝑛 + (𝑙𝑙 + 1/2)𝜎𝜎�ℎ𝑛𝑛) −𝑁𝑁(𝛼𝛼ℎ𝑛𝑛 + (𝑙𝑙 − 1/2)𝜎𝜎�ℎ𝑛𝑛),𝑁𝑁(⋅) is the normal CDF and 
𝑑𝑑𝑁𝑁(±1)  = 0 
𝑞𝑞�𝑛𝑛 = 1/2 + 𝐶𝐶(ℎ𝑛𝑛) and 𝑞𝑞𝑛𝑛 = 𝑞𝑞�𝑛𝑛 + ((𝜇𝜇 − 𝑃𝑃)/𝜎𝜎)�ℎ𝑛𝑛  
 
The author states that from a practical perspective, we can assume that 𝑞𝑞�𝑛𝑛 = 1/2 if 𝐶𝐶 is sufficiently 
large. 
 
Major formulation 
 
In this section, we will consider building a model by using tools we have. Our problem is to value 
a real option with multiple exercise time. Rather than to formulate the option model itself, we 
choose to build a portfolio that imitate the profit during the life of the option, and by Law of one 
price in a complete market, the total sum of rewards for each transaction will be our option value. 
The setting of our portfolio is similar to a problem of optimal execution in risky asset trading; if 
the underlying asset is the stock, then it is the one of the classical problems of Quantitative 
Finance. According to Igor Halperin and Feldsheyn [7], the goal of optimal execution problem for 
stock is to design trading strategy, for partitioning a large trade order to buy or sell a large block 
of a stock of some company into smaller chunks, and buy these chunks sequentially so that a 
potential market impact would be minimized, and at the meantime, the trader would like to 
maximize his profit from the optimal trading strategy. However, in our problem, the risk asset is 
a real asset, which is that it has intrinsic value in and of itself does not rely on monetization and 
exchange in order to provide value for its owner.  



97 
 

 
Another innate character we consider the real asset would have is that a real asset’s will 
continuous to generate value or utility that depends more than the asset’s value itself, this 
character is like the dividends that a stock will continuous to generate but dividends for stock 
highly depends on the stock value. We consider this as the return of the real assets on hand, and 
we will revisit this idea later when we build our model. 
 
One-period reward 
 
Immediate reward 
 
Similar to Igor Halperin and Feldsheyn [7], we adopt the notation and assumption of the portfolio 
model suggested by Boyd et. al. [8]. In this model, we have only one underlying asset, the total 
dollar value of assets on hand at beginning of time t is 𝑥𝑥𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑃𝑃𝑡𝑡, where 𝐴𝐴𝑡𝑡 is the total number of 
assets owned and 𝑃𝑃𝑡𝑡 is the price for underlying asset at time t. An investment portfolio includes a 
yield risk-free interest rate𝑃𝑃𝑓𝑓 and a risk-free bank cash account 𝑏𝑏𝑡𝑡 which also serves as our budget. 
We ignore the case when selling asset is allowed, which means we don’t have a short position in 
the asset, 𝐴𝐴𝑡𝑡 ≥ 0. The total portfolio value at the beginning of time t is: 
 

𝛱𝛱𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑡𝑡 
 

Trade 𝑢𝑢𝑡𝑡 = 𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡 at the beginning of the time period t, where 𝑎𝑎𝑡𝑡 ≥ 0 is the amount of assets 
purchased, therefore the asset value 𝑥𝑥𝑡𝑡+ immediately after trade is deterministic, which is: 
 

𝑥𝑥𝑡𝑡+ = 𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡 
 

Assuming that all rebalancing of asset positions are financed from the bank account, this implies: 
 

𝑏𝑏𝑡𝑡+ = 𝑏𝑏𝑡𝑡 − 𝑢𝑢𝑡𝑡 
 

And we require 𝑏𝑏𝑡𝑡+ ≥ 0 serves as our budget. Furthermore, this serves as our self-finance 
constraints, since the portfolio value remains instantaneously upon a trade, 𝛱𝛱𝑡𝑡+ = 𝛱𝛱𝑡𝑡. 
 

𝛱𝛱𝑡𝑡+ = 𝑥𝑥𝑡𝑡+ + 𝑏𝑏𝑡𝑡+                                      
= (𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡) + 𝑏𝑏𝑡𝑡+ + 𝑏𝑏𝑡𝑡 − 𝑏𝑏𝑡𝑡         
= 𝛱𝛱𝑡𝑡 + 𝑢𝑢𝑡𝑡 + 𝑏𝑏𝑡𝑡+ − 𝑏𝑏𝑡𝑡                         

 
We assume that our underlying assets with dollar amount 𝑥𝑥𝑡𝑡 and𝑥𝑥𝑡𝑡+ will generate one period value 
𝑃𝑃𝑡𝑡 and 𝑃𝑃𝑡𝑡+ accordingly. The change of portfolio value when action 𝑎𝑎𝑡𝑡 is taken in period t is ∆𝛱𝛱 with 
the form: 
 

∆𝛱𝛱 = �(1 + 𝑃𝑃𝑡𝑡+)𝑥𝑥𝑡𝑡+ + �1 + 𝑃𝑃𝑓𝑓�𝑏𝑏𝑡𝑡+� − �(1 + 𝑃𝑃𝑡𝑡)𝑥𝑥𝑡𝑡 + �1 + 𝑃𝑃𝑓𝑓�𝑏𝑏�+ 𝑃𝑃𝑡𝑡𝑥𝑥𝑡𝑡           
 = (𝑃𝑃𝑡𝑡+ − 𝑃𝑃𝑡𝑡)𝑥𝑥𝑡𝑡 + �𝑃𝑃𝑡𝑡+ − 𝑃𝑃𝑓𝑓�𝑢𝑢𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑥𝑥𝑡𝑡                                                                          

= 𝑃𝑃𝑡𝑡+𝑥𝑥𝑡𝑡 + �𝑃𝑃𝑡𝑡+ − 𝑃𝑃𝑓𝑓�𝑢𝑢𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑥𝑥𝑡𝑡                                                                                        
 

The plus 𝑃𝑃𝑡𝑡𝑥𝑥𝑡𝑡 is because we assume that the assets we have already owned; i.e. 𝐴𝐴𝑡𝑡𝑃𝑃𝑡𝑡, will still 
generate value in current period. And, one thing should be noticed that, if no action has been 
taken in current period, then 𝑃𝑃𝑡𝑡+ = 𝑃𝑃𝑡𝑡, then we substitute this relationship into our model, the 
change of portfolio value ∆𝛱𝛱 will become: 
 



98 
 

∆𝛱𝛱 = 𝑃𝑃𝑡𝑡𝑥𝑥𝑡𝑡 
 

Which is consistent with our assumption that the underlying assets we owned will continuously 
generate value. 
 
According to our methodology, we are pricing the option according to a complete market, and this 
concludes our first part of reward function in period 𝑡𝑡. 
 

𝑅𝑅(0)(𝑃𝑃𝑡𝑡,𝐴𝐴𝑡𝑡 ,𝑎𝑎𝑡𝑡  ) = 𝑃𝑃𝑡𝑡𝐴𝐴𝑡𝑡𝑃𝑃𝑡𝑡 + �𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑓𝑓�𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡                               
= −𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑎𝑎𝑡𝑡 + (𝑎𝑎𝑡𝑡 + 𝐴𝐴𝑡𝑡)𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡 

 
Simple example 
 
To present our idea more clearly, let’s consider a simple three period example. In this example, 
we will purchase 𝑎𝑎1 and 𝑎𝑎2 assets at the start of period 1 and 2 respectively, and the detailed 
roadmap in Figure 1. 

 
 
After purchasing 𝑎𝑎1 units, there will be real asset in our portfolio. The real assets and bank account 
generate different return period, 𝑃𝑃𝑡𝑡 and 𝑃𝑃𝑓𝑓 respectively. During period 1, the profit generated by 
the real assets will be 𝑎𝑎1𝑃𝑃1(1 + 𝑃𝑃1)− 𝑎𝑎1𝑃𝑃1 = 𝑎𝑎1𝑃𝑃1𝑃𝑃1, and we subtract 𝑎𝑎1𝑃𝑃1 is because the real assets 
at the beginning of time 2 will worth 𝑎𝑎1𝑃𝑃2 and be added back. And this idea can be generated 
through all time periods. 
 
We assume that no action can be taken at the terminal, which yields the portfolio value at terminal 
are known once we have all information at time three, i.e., the  total number of assets we have 
bought so far and how much per unit of real asset worth at the terminal. 
 

𝛱𝛱3 = 𝑥𝑥3 + 𝑏𝑏3 + 𝑎𝑎1𝑃𝑃1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓� + (𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃2𝑃𝑃2      
                                = (𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃3 + 𝑏𝑏0�1 + 𝑃𝑃𝑓𝑓�

3 − 𝑎𝑎1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓�
2 − 𝑎𝑎2𝑃𝑃2�1 + 𝑃𝑃𝑓𝑓� 

                                   +𝑎𝑎1𝑃𝑃1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓� + (𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃2𝑃𝑃2 
 



99 
 

After re-grouping, we can get: 
 

𝛱𝛱3 = (𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃3 + �𝑎𝑎1𝑃𝑃1𝑃𝑃1 − 𝑎𝑎1𝑃𝑃1𝑃𝑃𝑓𝑓��1 + 𝑃𝑃𝑓𝑓� + �(𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃2𝑃𝑃2 − 𝑎𝑎2𝑃𝑃2𝑃𝑃𝑓𝑓� 

 + �𝑏𝑏1�1 + 𝑃𝑃𝑓𝑓�
2 − 𝑎𝑎1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓� − 𝑎𝑎2𝑃𝑃2� 

         = (𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃3 + 𝑅𝑅1
(0)�1 + 𝑃𝑃𝑓𝑓� + 𝑅𝑅2

(0) + �𝑏𝑏1�1 + 𝑃𝑃𝑓𝑓�
2 − 𝑎𝑎1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓� − 𝑎𝑎2𝑃𝑃2� 

 
Which means, if we set terminal value as 
 

(𝑎𝑎1 + 𝑎𝑎2)𝑃𝑃3 +  �𝑏𝑏1�1 + 𝑃𝑃𝑓𝑓�
2 − 𝑎𝑎1𝑃𝑃1�1 + 𝑃𝑃𝑓𝑓� − 𝑎𝑎2𝑃𝑃2� 

 
we will replicate the portfolio exactly. However, we are pricing the real option. Mainly, we are 
pricing the time flexibility of this option.  
 
And to evaluate an option, we decide to use a negative penalty if it exists, otherwise 0, as the 
terminal value. 
 
Market impact and risk penalty 
 
We assume that every period we will face a random unit dollar value of assets’ negative market 
impact to historical decisions, which yields a cost. 
 

 𝑅𝑅𝑡𝑡𝑀𝑀  =  −(𝑃𝑃1(𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡) +  𝑃𝑃2𝑡𝑡 + 𝜖𝜖𝑡𝑡)(𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡 )𝑃𝑃𝑡𝑡 
 

Furthermore, we consider use 𝜆𝜆(𝜖𝜖𝑡𝑡)  =  0, 𝑣𝑣𝑎𝑎𝑃𝑃(𝜖𝜖𝑡𝑡)  =  𝜎𝜎𝑀𝑀2. And  𝜎𝜎𝑀𝑀2 is high enough so that we 
should consider the risk when making decision. From there, we introduce the last piece of our one 
period reward, the negative risk reward with risk-aversion 𝜆𝜆𝑟𝑟. 
 

𝑅𝑅𝑡𝑡𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘 = −𝜆𝜆𝑟𝑟𝑃𝑃𝑡𝑡2𝜎𝜎2𝑀𝑀(𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡)2 
 
 
One period rate of return 
 
To evaluate the return rate of owned assets, we consider define the return rate as a function of 
existing information. For simplicity, we consider 𝑃𝑃𝑡𝑡  as a function of 𝑃𝑃𝑡𝑡  , i.e,𝑃𝑃𝑡𝑡  =  𝐹𝐹(𝑃𝑃𝑡𝑡). Then, in 
terms of given information at time 𝑡𝑡, 𝑃𝑃𝑡𝑡is a fixed number with respect to action 𝑎𝑎𝑡𝑡, hence there will 
be no difference before taking an action, denoted as 𝑃𝑃𝑡𝑡 and after𝑃𝑃𝑡𝑡+. Furthermore, we assume that 
𝑃𝑃𝑡𝑡 is a martingale, then when using Itô’s lemma and set drift term to 0, we can have an 
ODE(ordinary differential equation) of function 𝑃𝑃𝑡𝑡  =  𝐹𝐹(𝑃𝑃𝑡𝑡) as below: 
 

𝐹𝐹𝑡𝑡  + (𝛼𝛼 −  𝜆𝜆𝑘𝑘)𝑃𝑃𝑡𝑡𝐹𝐹𝑃𝑃𝑡𝑡  +
1
2
𝜎𝜎2𝑃𝑃𝑡𝑡2𝐹𝐹𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡  = 0 

 
As 𝑃𝑃𝑡𝑡 is assumed to be independent to time𝑡𝑡, the ODE above can be solved as: 
 

𝐹𝐹(𝑃𝑃𝑡𝑡)  =  𝑚𝑚
𝑚𝑚−1

𝑃𝑃𝑡𝑡
𝑚𝑚−1
𝑚𝑚 × 𝐶𝐶 , where𝑚𝑚 =  𝜎𝜎2

𝛼𝛼−𝜆𝜆𝑘𝑘
. 

 
Since function 𝐹𝐹represents the rate of return of holding assets, constant𝐶𝐶 should be sufficiently 
small because the first part of multiplication is almost a portion of price.  
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Multi-period convex optimization 
 
The formulation for MDP above can also solved as a risk- and cost-adjusted reward maximization 
problem reads: 

𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑡𝑡 ∀𝑡𝑡𝜆𝜆[�
𝑇𝑇−1

𝑡𝑡 = 0

𝛾𝛾𝑡𝑡𝑅𝑅((𝐴𝐴𝑡𝑡 ,𝑃𝑃𝑡𝑡 ,𝑌𝑌𝑡𝑡 , 𝑡𝑡),𝑎𝑎𝑡𝑡)] 

𝑅𝑅𝑡𝑡 = 𝑅𝑅(0)
𝑡𝑡 + 𝑅𝑅𝑀𝑀𝑡𝑡 + 𝑅𝑅𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑡𝑡 

                    𝑅𝑅(0) 
𝑡𝑡 (𝑎𝑎𝑡𝑡)  = −𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡𝑃𝑃𝑓𝑓 + (𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡)𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡 

                                               𝑅𝑅𝑀𝑀𝑡𝑡(𝑎𝑎𝑡𝑡)  = −(𝑃𝑃1(𝐴𝐴𝑡𝑡 +  𝑎𝑎𝑡𝑡) + 𝑃𝑃2𝑡𝑡 + 𝜖𝜖𝑡𝑡)(𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡 )𝑃𝑃𝑡𝑡 
       𝑅𝑅𝑡𝑡𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘  =  −𝜆𝜆𝑃𝑃𝑡𝑡

2𝜎𝜎2𝑀𝑀(𝐴𝐴𝑡𝑡 + 𝑎𝑎𝑡𝑡)2  
                                  w.r.t.        𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑎𝑎𝑡𝑡 ≤ 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 ∀ 𝑡𝑡 

𝑏𝑏𝑡𝑡 − 𝑎𝑎𝑡𝑡𝑃𝑃𝑡𝑡 ≥ 0  ∀𝑡𝑡 

           𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 ≤ �
𝑇𝑇−1

𝑡𝑡 =0

𝑎𝑎𝑡𝑡 ≤ 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥 

𝑎𝑎𝑡𝑡 ∈ {0, 1, . . . ,𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥} 
 
MDP summary 
 
We summarize our MDP model as follows: 
 

1. State space: 𝑆𝑆𝑡𝑡 = 𝑃𝑃 × 𝐴𝐴𝑡𝑡 × 𝑀𝑀 × 𝑀𝑀𝑡𝑡, where 𝑃𝑃 is the price, 𝐴𝐴𝑡𝑡is the historical decision, T is the 
current time, 𝑀𝑀𝑡𝑡  is the total budget we have at time 𝑡𝑡 

2. Decision epochs: [0,𝑀𝑀] 
3. Actions {0, . . . , 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 } 
4. One period reward, 𝑅𝑅𝑡𝑡 = 𝑅𝑅(0)

𝑡𝑡  + 𝑅𝑅𝑀𝑀𝑡𝑡 + 𝑅𝑅𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑡𝑡 
5. In terms of model dynamic, we choose to use the market dynamic exactly. 

 
Theoretical results 
 
Without penalty 
 
Under the assumption that we remove all the constraints, including budget constraint and local 
total number of unit can purchase, and consider the entire problem simply as a real option pricing 
with the global constraint, and take consideration of market impact and risk penalty, we will have 
a nice and consistence analytic solution, which are: 
 

𝑅𝑅(𝑃𝑃𝑇𝑇−1,𝐴𝐴𝑇𝑇−1,𝑀𝑀 − 1)  = 𝑃𝑃1[𝑃𝑃𝑇𝑇−1 − 𝑃𝑃𝑓𝑓 − 𝑃𝑃2(𝑀𝑀 − 1)]/2[𝑃𝑃1𝑃𝑃𝑇𝑇−1 + 𝜆𝜆𝑟𝑟𝜎𝜎2𝑀𝑀𝑃𝑃𝑇𝑇−12]  − 𝐴𝐴𝑇𝑇−1 
and 

𝑅𝑅(𝑃𝑃𝑡𝑡 ,𝐴𝐴𝑡𝑡 , 𝑡𝑡) =
𝑃𝑃𝑡𝑡�𝑃𝑃𝑡𝑡 + 𝑃𝑃𝑓𝑓(𝛾𝛾𝑚𝑚 − 1) − 𝑃𝑃2𝑡𝑡�

2�𝑃𝑃1𝑃𝑃𝑡𝑡 + 𝜆𝜆𝑟𝑟𝜎𝜎2𝑀𝑀𝑃𝑃𝑡𝑡2�
− 𝐴𝐴𝑡𝑡  ∀𝑡𝑡 ≠ 𝑀𝑀 − 1 

 
where 𝜆𝜆(𝑃𝑃𝑡𝑡+1|𝑃𝑃𝑡𝑡)  = 𝑃𝑃𝑡𝑡𝑚𝑚 
 
With penalty 
 
Under swing option framework, we assume that there will be few more constraints on trading. 
For example, there will be a minimum amount of purchase 𝐴𝐴∗ so that a penalty  𝑃𝑃∗  will be added 
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on the unit left to meet 𝐴𝐴∗. Besides that, there will be limited purchasable number at decision 
epoch, such as,  0 ≤ 𝑎𝑎𝑡𝑡 ≤ 5 indicates that one can only buy at most 5 units.  
 
However, under these constraints there will be no closed form optimal because optimal actions 
may not lying into the feasible action set at each time epoch. So, the best actions derived by 
Backward Induction will not hold anymore.  
 
Since a closed form optimal solution is not available, but we can still go further discussion under 
these constraints.  Consider an agent makes a decision at time 𝑀𝑀 − 1  without considering penalty 
and the agent gets an optimal action such that the agent does not meet the minimum purchase 
requirement. Then from result above: 
 

 𝑎𝑎𝑇𝑇−1∗  =  𝑟𝑟𝑡𝑡 −𝑟𝑟𝑓𝑓−𝑐𝑐2(𝑇𝑇−1)
2(𝑐𝑐1𝑃𝑃𝑇𝑇−1+𝜆𝜆𝜎𝜎𝑀𝑀2𝑃𝑃𝑇𝑇−12)

− 𝐴𝐴𝑇𝑇−1  

 
After the agent realizes that there may be a penalty, the optimal action will be: 
 

 𝑎𝑎𝑇𝑇−1∗∗  = 𝑟𝑟𝑡𝑡 −𝑟𝑟𝑓𝑓−𝑐𝑐2(𝑇𝑇−1) + 𝑃𝑃∗/𝑃𝑃𝑇𝑇−1
2(𝑐𝑐1+𝜆𝜆𝜎𝜎𝑀𝑀2𝑃𝑃𝑇𝑇−1 )

− 𝐴𝐴𝑇𝑇−1   
 

As we can see, 𝑎𝑎𝑇𝑇−1∗∗ > 𝑎𝑎𝑇𝑇−1∗. But what if 𝑎𝑎𝑇𝑇−1∗∗ > 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1 ? In this case, the agent will meet 
the minimum purchase requirement and there will be no penalty at all. Hence, 𝑎𝑎𝑇𝑇−1∗∗will not be 
the optimal action anymore. So, 𝑎𝑎𝑇𝑇−1∗∗ is optimal only when 𝑎𝑎𝑇𝑇−1∗∗ < 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1.  Consider the 
last situation that 𝑎𝑎𝑇𝑇−1∗∗ > 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1. Known that 𝑉𝑉𝑇𝑇−1has a quadratic framework with respect to 
𝑎𝑎𝑇𝑇−1, so if the agent reduces the amount of purchase, the value of 𝑉𝑉𝑇𝑇−1will increase. But once it is 
lower than𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1, 𝑉𝑉𝑇𝑇−1 will be imposed to a penalty, which means keep reducing the amount 
of purchase will lead to a decrease in 𝑉𝑉𝑇𝑇−1. Hence, if 𝑎𝑎𝑇𝑇−1∗∗ > 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1 , the best action is 
𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1 . Moreover, we can see that under the penalty assumption on the minimum amount 
of purchase, if the agent does not purchase enough amount to meet 𝐴𝐴∗, then the holding amount 
will not exceed 𝐴𝐴∗.  
 
Furthermore, we can find a threshold for 𝑃𝑃∗so that we can determine the best action by setting 
𝑎𝑎𝑇𝑇−1∗∗ = 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1 , then we will get: 
 

𝑃𝑃𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑖𝑖∗ = 𝑃𝑃𝑇𝑇−1[2(𝑃𝑃1 + 𝜆𝜆𝜎𝜎𝑀𝑀2𝑃𝑃𝑇𝑇−1 )𝐴𝐴∗ − 𝑃𝑃𝑡𝑡 + 𝑃𝑃𝑓𝑓 + 𝑃𝑃2(𝑀𝑀 − 1)] 
 

To be more specific, once at time𝑀𝑀 − 1, the right-hand side is smaller than left hand side, the 
agent should take action 𝐴𝐴∗ − 𝐴𝐴𝑇𝑇−1, otherwise 𝑎𝑎𝑇𝑇−1∗∗. 
 
Proposed method and current issues 
 
We tried to solve a simplified version of the above MDP formulation using backward induction 
and Monte Carlo method.  
 
For backward induction, since the state space is excessively large. The backward induction unable 
to solve daily decision problem. Furthermore, since we don’t have any data available, which causes 
the result is highly depend on the input parameter, and a proper methodology to tune parameters 
is also one of the main problems we are facing.  
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The Monte Carlo method has the same issues; in addition, as time is one dimension in our state 
space, this means each state can only be visited at most once in each episode. And in practice, 
after we run 2,000,000 episodes, there are still many states not be visited. 
 
Moving forward 
 
By summarizing the issues, we have so far, we consider using function approximation approach 
to solve the Dynamic Programming problem.  
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