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Executive summary 
Chi-Guhn Lee, C-MORE Director 

Introduction 
 
After a fast learning curve, I am happy to say that C-MORE researchers, staff, students, 
collaborators, and company representatives have adapted very well to the exigencies of the Covid-
19 pandemic. Teaching, conference presentations, and discussions with our collaborating 
companies are all taking place online – with no loss in the topnotch quality expected at C-MORE. 
The following report summarizes work undertaken since the meeting in June 2020. 
  
The C-MORE team 
 
Janet Lam, Assistant Director 
Through the balance of 2020, Janet has pressed on with member projects either directly or 
through supervision of students. In particular, she worked with DND in the transition of staff, 
with all new collaborators from DND working on the propulsion diesel engine project. She also 
served as the lead writer in several grant proposals, from within the university to national calls 
for proposal. She (virtually) met with several potential collaborators to discuss ways to combine 
forces, ranging from research groups from other universities (Technical University of Denmark), 
maintenance solution providers (Celonis, Fiix Software) to direct consumers of C-MORE services 
(Primaris, Sonafi Foods). At the 2020 MainTrain virtual conference, she presented on “Machine 
learning approaches to take your asset management strategies to the next level.” In other work, 
she taught a graduate course in Statistical Methods of Quality Assurance, expanding the library 
topics of C-MORE’s expertise. 
 
Andrew K. S. Jardine, Professor Emeritus 
Andrew has remained busy over the past six months. Like everyone else, his teaching and speaking 
engagements have been virtual. In August, he delivered a virtual keynote address, “An analytic 
toolbox for optimizing condition-based maintenance (CBM) Decisions,” at APARM 2020, 9th 
Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modelling, 
Vancouver. In August, he also served on the PhD committee of Gaowei Xu, supervised by Fae 
Azhari. In September, Andrew was awarded a Life Membership by PEMAC Asset Management 
Association of Canada, in recognition of his significant contributions to PEMAC. In the fall term, 
he taught graduate class MIE 1723, Engineering Asset Management, with Sharareh Taghipour 
(online). In November, Andrew, Don Barry, and Sharareh Taghipour delivered the annual 
Physical Asset Management program under the auspices of the School of Continuing Studies 
(online). Another November project was a virtual seminar presentation, “Evidence based physical 
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asset management: Preventive replacement and inspection,” at National University of Comahue, 
Argentina. In the week after the Progress Meeting, Gaowei Xu, Andrew, and Fae Azhari will make 
a virtual presentation, “Optimizing bridge maintenance management based on routine inspection 
data: Role of hazard modelling,” at OMAINTEC 2020: International Operations & Maintenance 
Conference in the Arab Countries. Saudi Arabia. Andrew’s final presentation scheduled for 2020 
will be a keynote (virtual) address, “An analytic toolbox for predictive maintenance decisions,” at 
Seminar on Asset Management, Universidad de Chile, Santiago, Chile.        
 
Dragan Banjevic, C-MORE Consultant 
Dragan continued to collaborate with C-MORE on projects with consortium members, mostly 
with Kinross Gold, TTC, and MOD. He also provided help in other projects with C-MORE 
students, as well as in their research. 
 
Sharareh Taghipour, Ryerson, External Collaborator 
In the fall term, Sharareh co-taught a graduate course with Andrew Jardine at the University 
of Toronto and was an instructor for the annual PAM course offered through the School of 
Continuing Studies in November. She is working on a project entitled “Decentralized data 
analytics and optimization methods for Physical Asset Management” (NSERC Discovery 
grant), as well as two collaborative projects with industry: “Developing methods for measuring 
social, economic, and environmental impacts of maintenance activities for physical assets,” 
with Fiix Inc. (NSERC CRD), and “Real-time optimization of production scheduling,” with 
Axiom Group (NSERC Alliance). In addition, she is using the “Industry 4.0 Smart Factory 
System” to develop predictive maintenance models and real-time optimization of production 
scheduling (funding from Ministry of Economic Development, Job Creation and Trade and 
John R. Evans Leaders Fund).  
 
Scott Sanner, University of Toronto 
Scott's group continues work on a range of applied projects covering power grid security (journal 
article accepted by IEEE Transactions on Smart Grid), predictive modelling for residential HVAC 
(journal article published in Science and Technology for the Built Environment), and predictive 
clustering for geographical applications (journal article published in Geographical 
Analysis).  Scott's group also continues fundamental AI research on control methods leveraging 
deep learning (with two journal articles published in Artificial Intelligence as well as Journal of 
AI Research).  Finally, in the past year, Scott's group has made significant advances in the next 
generation of personalized conversational assistants with three conference papers accepted to the 
leading research venues for this area (WWW-20, SIGIR-20, and RecSys 2020). 
 
Fae Azhari, University of Toronto 
Fae’s research group now consists of 4 doctoral students, 3 MASc students, and 1 undergraduate 
student. Her projects include: complex naval asset management using sensor data, optimizing the 
fabrication and performance of multifunctional cementitious composites, fibre optic sensors for 
vibration monitoring, sensing system for gait analysis, bridge scour monitoring, condition-based 
maintenance of bridges, and compression creep behaviour of lead-free solder alloys. Her group 
members submitted a number of conference abstracts this past year, which will be now be 
presented virtually. 
 
Jue Wang, Affiliate Professor 
Jue Wang is an Assistant Professor at Smith School of Business, Queen’s University. He is 
currently supervising/co-supervising two PhD students on sequential decision making, in 
collaboration with Scotiabank. He continues to work on methodological research related to 
sensor-based online fault diagnosis. Two recent papers have been accepted by top journals: one 
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by Operations Research (November 25) and the other by Production & Operations Management 
(October 16). 
 

Ali Zuashkiani, Director of Educational Programs 
Ali has been active providing consulting services to various industries such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially busy working 
with a group of 10 petrochemical plants and one major steel milling company to improve their 
Operation and Maintenance business processes and procedures. Ali has also been working with 
LEORON Training Company to develop C-MORE’s educational programs. There are two 
upcoming programs, a 5-day Asset Management course and a 3-day Spare Parts management 
course which will be held in December 2020 and February 2021, respectively. Both will be virtual. 
Ali will be helping with another new C-MORE program in May 2021, Machine Learning and AI 
Applications in Physical Asset Management, recently developed by Janet and Chi-Guhn and 
offered through the School of Continuing Studies (online). 
 

C-MORE students and postdoctoral fellows 
We have students at all levels working with us – from undergraduate to doctoral. C-MORE 
students have been extremely busy over the past six months, with many working on projects 
specifically related to Consortium members’ concerns. For more information on student research 
activities, see the section “Overall Project Direction” (page 16). We will also have students 
presenting their work at the December meeting. 
 
C-MORE activities with consortium members  
 

Defence Science and Technology Laboratory (DSTL)  
Tim Jefferis proposed a new question on a complex spares management problem when there is a 
combination of replenishable and non-replenishable spare parts over a fixed mission duration. 
Arguably, parts from one non-operating unit could be used as spare parts for another non-
operating unit to create one operating unit. This project will be presented at the December 2020 
meeting by Dragan Banjevic. 
 

Department of National Defence (DND)  
The DND team experienced a full turnover on the staff associated with the propulsion diesel 
engine health analysis project. C-MORE and DND handled the transition and continued work on 
the project. We found the data did not demonstrate strong age-based relationships, but we are 
working on discovering relationships among the oil analysis variables. The project will be 
presented at the December meeting. 
 

Kinross Gold Corporation  
The KPI project wrapped up this fall, including an analysis of how the previous month’s 
maintenance activities affect the present operational availability. We have started a project on the 
business case for machine learning in maintenance. Our student Kide Zhou is working through 
the data processing part of the project and will present his progress at the December meeting. 
 

Toronto Transit Commission (TTC)  
We received updated data on the TTC re-inspection project, doubling the size of the data set. The 
data have been incorporated into the existing project. The results of this work are reported in this 
document.  
 
C-MORE educational programs  
 
Andrew Jardine and Ali Zuashkiani continue to act as educational ambassadors for C-MORE. In 
November, Andrew, Don Barry, and Sharareh Taghipour delivered the annual Physical Asset 
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Management program under the auspices of the School of Continuing Studies (online). For his 
part, Ali has been working with LEORON Training Company to develop C-MORE’s educational 
programs. Two upcoming programs, a 5-day Asset Management course and a 3-day Spare Parts 
management course, are scheduled for December 2020 and February 2021, respectively. Both will 
be held virtually. Last but by no means least, Janet and Chi-Guhn have developed a new, 
complementary five-day course, Machine Learning and AI Applications in Physical Asset 
Management, or “PAM2,” scheduled for May 2021 and offered through the School of Continuing 
Studies (online). We are very excited about this new course and see it as an important addition to 
the C-MORE repertoire. The brochure is available at: https://learn.utoronto.ca/programs-
courses/courses/3705-machine-learning-ai-applications-physical-asset-management. 
 
Conclusion 
 
Looking back at what we have accomplished in the past six months, I am proud of C-MORE’s 
adaptability. In effect, we have managed to change direction mid-stride. Our output has exceeded 
what anyone might have anticipated in the first weeks of the 2020 lockdowns – with no loss of 
quality. 
 
I wish everyone a safe holiday season and look forward to an equally productive but much less 
restrictive New Year. 
 
Chi-Guhn Lee 
December 2020 
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Visits and interactions with consortium members 
and others 
June 2020 – December 2020 
 

Note that all meetings during this period were virtual, in accordance with safe COVID-19 
protocols. 
 
Biweekly throughout LG Sciencepark 
Chi-Guhn Lee, Hyun-Rok Lee, Songci Xu, Bin Yang, Ram Sreenivasan, Jongsung Jan, and Y.J. 
Jeong met to discuss on two research directions: 1) Transfer Learning for Reinforcement 
Learning; 2) Transfer Learning on Intelligent Fault Diagnosis. These bi-weekly meetings aim at 
sharing our research progress with LG and discussing technical details. 
 
May 19, 2020 DND  
Janet had a call with Kulan to discuss status of the PDE CBM project. 
 
May 28, 2020 Kinross  
Janet, Dragan and Frank met with Emilio, Brian, Theresa, Ethan, Gustavo, and Max to present 
the results of the KPI project. 
 
June 3, 2020 CEA 
Janet and Chi-Guhn met with Dan Gent to discuss starting Data Audit project. The results of this 
project will be presented in the December 2020 progress meeting 
 
June 5, 2020 Exxon Mobil 
Chi-Guhn and Janet met with Bart Maciszewski and Frank Arthur from Exxon Mobil to discuss a 
project in optimizing the shutdown procedures of their plants. 
 
June 9, 2020  
Our summer progress meeting took place virtually for the first time. The meeting was attended by 
39 participants across 15 companies. 
 
June 16, 2020 Toromont & Safety Power 
Chi-Guhn and Janet met with Denis Gosselin and Carl Marinelli of Toromont and Bob Stelzer of 
Safety Power to discuss potential projects for Toromont’s investment requirement for the 
Industrial and Technological Benefits policy. 
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June 16, 2020 Primaris 
Chi-Guhn and Janet met with Gord Howells from Primaris REIT to discuss developing a 
relationship by conducting some small-scale projects involving students. 
 
June 17, 2020 Sonafi Foods 
Janet met with Brian Rossi of Sonafi foods to discuss potential collaborations. 
 
June 23, 2020 Primaris  
Janet met with Gord Howells to discuss a project for Tableau implementation of key indicators of 
their commercial properties. 
 
July 8, 2020  Kinross   
Seyedvahid met with Theresa and Ethan to define four sensors that collect health data for their 
vehicles for the ML business case project. 
 
July 20, 2020 Celonis 
Chi-Guhn and Janet met with Josua Vieten and Janina Nakladal of Celonis to introduce each 
other’s primary business areas, and to discuss potential collaborations. 
 
July 20, 2020 TTC 
Janet and Dragan met with a large team at TTC, including Tauqeer Quarashi, Tim Southworth, 
Gordon Webster, and Mo Ghaus to discuss progress on the NDT re-inspection project. 
 
August 13, 2020 CEA 
Janet met with Dan Gent to discuss progress on data audit project. We have spent some time 
exploring best ways to manage such a large data set. It has been split up into separate files per 
plant, and data cleansing is underway. 
 
August 18, 2020 Primaris 
Janet and Gord had a meeting on Primaris’ project on Tableau implementation, along with 
necessary changes due to the significant changes to Primaris’ properties throughout the COVID-
19 response. 
 
August 22, 2020 APARM 
Andrew gave a keynote presentation “An Analytic Toolbox for Optimizing Condition Based 
Maintenance (CBM) Decisions” and the 9th Asia-Pacific International Symposium on Advanced 
Reliability and Maintenance Modelling, Vancouver, Canada, August 20-23, 2020 
 
August 27, 2020  
Andrew served as a committee member on the PhD defence of Gaowei Xu, supervised by Professor 
Faezeh Azhari 
 
September 10, 2020 CEA 
Janet and Kimia met with Dan, giving an update on the data cleansing process of the data audit 
project, and providing a plan for modelling. Kimia started as an Industrial Engineering thesis 
student for this academic year. 
 
September 15, 2020 PEMAC 
We have three events to report for this day. 
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Andrew was awarded a Life Membership by PEMAC Asset Management Association of Canada in 
recognition of his significant contributions to PEMAC 

Chi-Guhn served as a panellist on Technology Panel Discussion on Emerging Technology for Asset 
Management at PEMAC’s MainTrain conference, held virtually. 
 
Janet presented a virtual talk, “Machine Learning Approaches to Take Your Asset Management 
Strategies to the Next Level,” at PEMAC’s MainTrain conference. 
 
September 16 – December 9, 2020  
Andrew taught graduate class MIE 1723: Engineering Asset Management with Sharareh 
Taghipour (online) 
 
September 18, 2020 NRC 
Chi-Guhn Lee, Dr. Yoon Ko and Sophie Tian met to understand the fire safety project and its 
relationship with other projects at NRC (specifically the E-Manifest project). 
 
September 24, 2020 Fiix Software 
Chi-Guhn and Janet met with Katie Allan and Frank Emery of Fiix Software, discussing ways to 
collaborate, especially by sponsoring student projects. 
 
September 25, 2020 Kinross 
Janet and Dragan met with Emilio Sarno, Brian Wright, Ethan Dabney, Theresa Taylor, and 
Moataz Negmeldin to present the latest findings on the KPI project. 
 
September 30, 2020 DND  
Chi-Guhn and Janet met with Kulan Ambalavanar, Elaine Fitzpatrick, and Abaida Al-Azzawi from 
DND to meet the new team championing the C-MORE file as Kulan moved on to another 
department. 
 
October 2, 2020 NRC 
Chi-Guhn Lee, Dr. Yoon Ko and Sophie Tian met to share updates on the grant application of the 
fire safety project and discuss creating a proposal for collaboration with other teams at NRC. 
 
October 8, 2020 CEA 
Janet and Kimia met with Dan Gent and Joelle Lancaster to show progress on the data audit 
project. We discussed probability distributions of uptimes as recorded by various different 
generating plants. We decided to focus on distributions of downtimes instead of uptimes. 
 
October 16, 2020 NRC 
Chi-Guhn Lee, Dr. Yoon Ko, and Sophie Tian met to share updates on the grant application and 
discuss resource allocation for the project. 
 
October 20, 2020 DND   
Janet met with Abaida and Daniel Saulnier to discuss progress on the PDE CBM project. Some 
records had ambiguous coding, wherein the preventive or corrective status were unclear. The 
meeting attendees clarified the coding and planned future work. 
 
October 22, 2020  Kinross  
Seyedvahid met with Theresa and Ethan to discuss the failure data and maintenance record 
spreadsheet. 
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October 28, 2020 Suncor 
Janet met with Simone Smith of Suncor to discuss issues with detecting leaks in the undercarriage 
of Suncor’s mobile asset fleet. 
 
October 28, 2020 Suncor 
Professor Chi-Guhn Lee and Professor Yu Zou met with Wei Xing, Jiahui Zhang, Tianyi Lyu, and 
Katie Xu in the initial meeting for 3D printer control project. 
 
October 30, 2020 NRC 
Chi-Guhn Lee, Dr. Yoon Ko, Sophie Tian, and Ozkan Elmali met to share updates on the grant 
application, to request data from NRC, and discuss potential complications with the combustion 
signature analysis project. 
 
November 2-6, 2020  
Andrew was lead instructor of the annual course on Physical Asset Management, given in 
conjunction with the University of Toronto’s School of Continuing Studies program, and taught 
online this year by Andrew, Don Barry and Sharareh Taghipour 
 
November 12, 2020  
Andrew gave a seminar, “Evidence Based Physical Asset Management: Preventive Replacement 
and Inspection”, at National University of Comahue, Argentina. 
 
November 12, 2020 CEA 
Janet and Kimia met with Dan, Joelle, and Asuka Boehm to discuss progress on the data audit 
project. We showed the probability distributions of the different downtimes and made a plan to  
compare the distributions’ similarities to assess whether the data are being recorded the same. 
 
November 13, 2020 NRC 
Chi-Guhn Lee, Dr. Yoon Ko, Sophie Tian, and Ozkan Elmali met to share updates on the grant 
application and to talk about what to expect from the combustion signature data (no access to 
data yet). 
 
November 16, 2020  
Janet met with Dharmen Dhalia to discuss his work in maintenance in the context of industry and 
applications. We discussed opportunities to educate graduate students in maintenance 
applications. 
 
November 17, 2020 DND 
Janet met with Abaida and Daniel to discuss the latest results on the PDE CBM project. We 
assessed that the results suggest time-based preventive replacements are necessary due to no 
aging factor. Since this does not align with our understanding of reality, we are exploring the 
deficiencies in the data causing this result. 
 
November 18, 2020 DTU 
Chi-Guhn and Janet met with Niels Henrik Mortensen, Waqas Khalid, and Kristoffer Vanrup 
Sigsgaard of Technical University of Denmark to discuss our respective research portfolios. We 
found DTU’s systemic approach to maintenance and asset management was a promising 
complement to C-MORE’s research. 
 
November 19, 2020 PEMAC 
Chi-Guhn and Janet attended the PEMAC GTA’s chapter update on the strategic plan for 2021. 
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November 20, 2020 TTC 
Chi-Guhn, Janet and Dragan met with Tauqeer, Hossein, and Mostafa Nouri to discuss wrapping 
up the NDT re-inspection project and involving other departments within TTC for a broader base 
of projects. 
 
November 26, 2020 Primaris 
Janet met with Gord to discuss tactical steps in recruiting for the Tableau implementation project. 
 
November 26, 2020  
Jiahui Zhang and Katie Xu met to discuss further details of the 3D printer control project, 
including available data/hardware and general plan moving forward. 
 
December 8, 2020 DTU 
Janet met with the DTU team to discuss preparations for the December 2020 progress meeting. 
 
December 18, 2020  
Andrew will deliver a keynote virtual presentation, “An Analytic Toolbox for Predictive 
Maintenance Decisions,” at Seminar on Asset Management, Universidad de Chile, Santiago, 
Chile. 
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C-MORE leadership activities 

Chi-Guhn Lee, Director 
 
Chi-Guhn continued to lead C-MORE in research projects and industry partnerships throughout 
the second half of 2020, albeit virtually. He served as a panelist on the Technology Panel 
Discussion on Emerging Technology for Asset Management at the MainTrain online conference, 
sharing recent advancements in machine learning, and how they may impact asset management. 
He spearheaded several grant proposals on leveraging predictive analytics to support the response 
to COVID-19 in Canada and is working steadily on developing relationships with various 
organizations to increase C-MORE's presence in the area of asset management in the face of 
emerging technologies.  
 
Janet Lam, Assistant Director  
 
Through the balance of 2020, Janet has pressed on with member projects either directly or 
through supervision of students. In particular, she worked with DND in the transition of staff, 
with all new persons from DND working on the propulsion diesel engine project. She also served 
as the lead writer in several grant proposals, from within the university to national calls for 
proposal. She (virtually) met with several potential collaborators to discuss ways to combine 
forces, ranging from research groups from other universities (Technical University of Denmark), 
maintenance solution providers (Celonis, Fiix Software) to direct consumers of C-MORE services 
(Primaris, Sonafi Foods). At the 2020 MainTrain virtual conference, she presented on “Machine 
learning approaches to take your asset management strategies to the next level.” In other work, 
she taught a graduate course in Statistical Methods of Quality Assurance, expanding the library 
topics of C-MORE’s expertise. 
 
Andrew K. S. Jardine, Professor Emeritus  
 
Andrew has remained busy over the past six months. Like everyone else, his teaching and speaking 
engagements have been virtual. In August, he delivered a virtual keynote address, “An analytic 
toolbox for optimizing condition-based maintenance (CBM) Decisions”, at APARM 2020 -The 9th 
Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modelling, 
Vancouver. Also in August, he served on the PhD committee of Gaowei Xu, supervised by 
Professor Faezeh Azhari. In September, Andrew was awarded a Life Membership by PEMAC Asset 
Management Association of Canada, in recognition of significant contributions to PEMAC. In the 
fall term, he taught graduate class MIE 1723, Engineering Asset Management, with Sharareh 
Taghipour (online). In November, Andrew, Don Barry, and Sharareh Taghipour delivered the 
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annual Physical Asset Management program under the auspices of the School of Continuing 
Studies (online). Another November project was a virtual seminar presentation, “Evidence based 
physical asset management: Preventive replacement and inspection,” at National University of 
Comahue, Argentina. In the week after the Progress Meeting, Gaowei Xu, Andrew, and Fae Azhari 
will make a virtual presentation, “Optimizing bridge maintenance management based on routine 
inspection data: Role of hazard modelling,” at OMAINTEC 2020: International Operations & 
Maintenance Conference in the Arab Countries. Saudi Arabia. Andrew’s final presentation 
scheduled for 2020 will be a keynote (virtual) address, “An analytic toolbox for predictive 
maintenance decisions,” at Seminar on Asset Management, Universidad de Chile, Santiago, Chile. 
 
Dragan Banjevic, C-MORE Consultant 
 
Dragan continued to collaborate with C-MORE on projects with consortium members, mostly 
with Kinross Gold, TTC, and MOD. He also provided help in other projects with C-MORE 
students, as well as in their research. 
 
Sharareh Taghipour, Ryerson University, External Collaborator 
 
In the fall term, Sharareh co-taught a graduate course with Andrew Jardine at the University 
of Toronto. She was also an instructor for the annual PAM course offered through the School 
of Continuing Studies. She is working on a project entitled “Decentralized data analytics and 
optimization methods for Physical Asset Management” (NSERC Discovery grant), as well as 
two collaborative projects with industry: “Developing methods for measuring social, economic, 
and environmental impacts of maintenance activities for physical assets,” with Fiix Inc. 
(NSERC CRD), and “Real-time optimization of production scheduling,” with Axiom Group 
(NSERC Alliance). In addition, she is using the “Industry 4.0 Smart Factory System” to develop 
predictive maintenance models and real-time optimization of production scheduling (funding 
from Ministry of Economic Development, Job Creation and Trade and John R. Evans Leaders 
Fund). 
 
Scott Sanner, University of Toronto 
 
Scott's group continues work on a range of applied projects covering power grid security (journal 
article accepted by IEEE Transactions on Smart Grid), predictive modelling for residential HVAC 
(journal article published in Science and Technology for the Built Environment), and predictive 
clustering for geographical applications (journal article published in Geographical 
Analysis).  Scott's group also continues fundamental AI research on control methods leveraging 
deep learning (with two journal articles published in Artificial Intelligence as well as Journal of 
AI Research).  Finally, in the past year, Scott's group has made significant advances in the next 
generation of personalized conversational assistants with three conference papers accepted to the 
leading research venues for this area (WWW-20, SIGIR-20, and RecSys 2020). 
 
Fae Azhari, University of Toronto 
 
Fae’s research group now consists of 4 doctoral students, 3 MASc students, and 1 undergraduate 
student. Her projects include: complex naval asset management using sensor data, optimizing the 
fabrication and performance of multifunctional cementitious composites, fibre optic sensors for 
vibration monitoring, sensing system for gait analysis, bridge scour monitoring, condition-based 
maintenance of bridges, and compression creep behaviour of lead-free solder alloys. Her group 
members submitted a number of conference abstracts this past year, which will be now be 
presented virtually. 
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Jue Wang, Affiliate Professor 
 
Jue Wang is an Assistant Professor at Smith School of Business, Queen’s University. He is 
currently supervising/co-supervising two PhD students on sequential decision making, in 
collaboration with Scotiabank. He continues to work on methodological research related to 
sensor-based online fault diagnosis. Two recent papers have been accepted by top journals: one 
by Operations Research (November 25) and the other by Production & Operations Management 
(October 16). 
 
Ali Zuashkiani, Director of Educational Programs 
 
Ali has been active providing consulting services to various industries, such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially busy working 
with a group of 10 petrochemical plants and one major steel milling company to improve their 
Operation and Maintenance business processes and procedures. Ali has also been working with 
LEORON Training Company to develop C-MORE’s educational programs. There are two 
upcoming programs, a 5-day Asset Management course and a 3-day Spare Parts Management 
course which will be held in December 2020 and February 2021, respectively. Both will be held 
virtually. Ali will also be helping with a new course, Machine Learning & AI Applications in 
Physical Asset Management, recently developed by Janet and Chi-Guhn, offered in May 2021 
through the School of Continuing Studies (online). 
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Overall project direction 
Janet Lam, Assistant Director 

Goals and retrospectives 
 

This section highlights the some of the main achievements in C-MORE for the period June 2020 
– December 2020. Throughout the months of the pandemic, the C-MORE team continued to 
operate with work-from-home modifications, with all meetings happening virtually. 
 
Like many other organizations, we attended our first virtual conferences and hosted our own 
progress meeting online. Our first virtual Physical Asset Management course was delivered in 
November, and our PAM2 course is scheduled for May of 2021; it is being planned for virtual 
delivery. 
 
As part of the COVID-19 response, there were several government grants and programs targeted 
toward addressing the pandemic. We submitted a proposal to the Department of National 
Defence’s call for a proposal on “Rapid Response: Real-time insights for pandemic decision-
making” and to the University’s internal Connaught Innovation Award for commercialization. 

Activities 

Collaboration with companies and site visits 

This section gives details on progress in research conducted with consortium members. 
 

Member Collaborations 

Defence Science and 
Technology Laboratory 

Tim proposed a new question on a complex spares management 
problem when there is a combination of replenishable and non-
replenishable spare parts over a fixed mission duration. Parts from 
one non-operating unit could be used as spare parts for another non-
operating unit to create one operating unit. This project will be 
presented at the December 2020 meeting by Dragan Banjevic. 

Department of National 
Defence 

The DND team experienced a full turnover on the staff associated 
with our project. C-MORE and DND worked on a full transition 
process and continued work on the propulsion diesel engine health 
analysis project. We found the data did not demonstrate strong age-
based relationships, but we are working on discovering relationships 
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Member Collaborations 

among the oil analysis variables. This project will be presented at the 
December meeting. 

Kinross The KPI project wrapped up this fall, including analysis of how the 
previous month’s maintenance activities affect the present 
operational availability. We started a project on the business case for 
machine learning in maintenance. Our student Kide Zhou is working 
through the data processing part of the project and will present his 
progress thus far at the December meeting. 

Toronto Transit 
Commission 

We received updated data on the TTC re-inspection project, doubling 
the size of the data set. The data have been incorporated into the 
existing project. The results of this work are reported in this 
document. 

 

Theoretical work 

This section on theoretical work is oriented toward students’ and postdoctoral fellows’ research 
topics. 
 

Name Activity 

Tushar Aggarwal, 
MEng student 

Tushar is in his first year of MEng in the Mechanical Engineering 
program and is focusing on artificial intelligence and robotics. He is 
currently working on anomaly detection on train tracks using 
thermal imaging. The project was assigned to him in November 
2020. He is exploring using Convolution Neural Network (CNN) 
algorithms such as YoloV4 for object detection and tuning them to 
custom thermal image dataset received from TTC to detect 
anomalies in railway tracks.  

Kuilin Chen, PhD 
candidate 

Kuilin passed his first committee meeting and achieved candidacy 
status in October 2020. He completed the project on incremental 
few-shot learning and submitted a paper to ICLR 2021. His research 
interest is few-shot learning.  

Ozkan Elmali, MASc 
student 

Ozkan is a new MASc student working on a reinforcement learning 
approach to the vehicle routing and safe routing problem. As vehicle 
routing is known to be a computationally hard problem, there is 
great potential in taking a RL approach. Safe routing is a special case 
of vehicle routing for transporting hazardous materials that have 
additional restrictions and a heavier weight to reduce crash risks. As 
a newly registered student, he is currently taking several courses. 

Anmol Garg, MEng 
student 

Anmol is in the final year of MEng in Mechanical & Industrial 
Engineering. In the pursuit of a career in data analytics, he has taken 
introductory courses. Now, in a real-world setting, he has been 
involved in a project under Professor Chi-Guhn Lee since March 
2020. The project deals with detecting banned items in baggage 
using Convolutional Neural Network (CNN) concepts applied via the 
YOLOv3 algorithm. The model is meant to be deployed in scanning 
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Name Activity 

systems at transportation hubs (mainly airports). The project also 
delves into Domain Adaptation integrated with Object Detection 
problem, a novel concept by itself as Domain Adaptation is usually 
concerned with Classification.  

Michael Gimelfarb, 
PhD candidate 

Michael has continued his doctoral work on knowledge transfer in 
reinforcement learning using graph-structured data, Bayesian 
approaches and hierarchical RL. He is supervised by Scott Sanner 
and Chi-Guhn Lee. 

Scott Koshman, PhD 
candidate 

Scott has continued his doctoral research on equipment health 
monitoring for Halifax Class frigates. He is supervised by Professor 
Fae Azhari. 

Seyedvahid Najafi, PhD 
candidate 

Vahid is a full-time PhD student who is working on the maintenance 
modelling and optimization of multi-unit series systems. In his 
research, an opportunistic maintenance policy with general repair is 
developed for a two-unit series system, in which the condition of one 
unit is monitored, and only the age information is available for the 
other unit. The problem is formulated in a semi-Markov decision 
process framework, and an algorithm is developed to find the 
optimal control limits and the long-run average cost per unit time. A 
paper entitled “An optimal maintenance policy for a two-unit series 
system with general repair” was accepted by IISE Annual Conference 
& Expo 2020, New Orleans, Louisiana, and ICOR 2020 conference, 
Toronto. He applies reinforcement learning algorithms to find 
optimal solutions for maintenance problems modeled in the SMDP 
framework. Vahid will be ready for his first annual progress review 
meeting at the beginning of 2021. 

Shashank Saurav, 
MEng student 

Shashank is a final year MEng Student in Electrical and Computer 
Engineering. Since April 2020, he has been working under the 
supervision of Dr. Chi-Guhn Lee on a project which employs the 
state-of-the-art YOLO algorithm to detect banned items in security 
scanned images at airports. The project also explores a Domain 
Adaptation approach in the object detection paradigm. 

Jahyun Shin, MEng 
student 

Jahyun is a first year MEng student in Mechanical and Industrial 
Engineering program with an emphasis on analytics and machine 
learning. Under Professor Chi-Guhn Lee, she is taking charge of an 
early-stage deep learning research project to develop a model that 
can automatically detect and classify restricted items for an airport’s 
X-ray baggage scanner. She is also applying adversarial domain 
adaptation techniques to compensate for the small number of 
labelled X-ray images provided by the stakeholder 

Avi Sokol, PhD 
candidate 

A flex-time PhD student and a full-time Business Data Scientist and 
Inventory Specialist, Avi is researching the integration of 
Reinforcement Learning and Inventory Control to reduce waste in 
supply chains.  
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Name Activity 

Kimia Taghvaei Ganjali, 
IndE thesis student 

Kimia is a fourth-year Industrial Engineering student and is working 
on the CEA data audit project for the individual thesis. The objective 
of the project is to build a framework for CEA. This framework will 
help assess its records and build consistency throughout all sites 
working with CEA. Large data sets of all CEA sites have been audited 
and analyzed to generate a model and perform statistical 
analysis. The project is now in the evaluation phase.   

Sophie Tian, MASc 
student 

Sophie is a first year MASc. Since September 2020, she has been 
taking Introduction to Machine Learning and Stochastic Processes. 
She is working on the combustion signature analysis project in 
collaboration with NRC and is reviewing the literature on gas 
classification methods.  

Katie Xu, MASc student Katie started her MASc in September 2020. She has been working 
with collaborators in the Department of Materials Science and 
Engineering to kick-start a project on the use of machine learning 
techniques for in-situ process monitoring and control in 3D printing 
systems. She has been building background knowledge on this topic 
by reviewing the literature, while taking courses and studying 
machine learning fundamentals.  

Songci Xu, PhD 
candidate 

Songci started his PhD program in January 2020. His research 
focuses on applying transfer learning to Intelligent Fault Diagnosis 
(IFD), one of the projects of LG Sciencepark. He is also working on 
the explanatory ability of deep domain adaptation via Optimal 
Transport Theory, which counts towards his thesis. 

Ruiqi Yang, MEng 
student 

Ruiqi Yang is a second-year graduate student pursuing his Master’s 
of Engineering in Mechanical and Industrial Engineering. He 
finished his MEng project, “Generic Real Options Valuation,” at the 
end of August 2020. He and his teammates defined the Real 
Options Valuation model using option theory, stochastic 
process, and Markov decision process. They solved the model by 
using Double-Deep Q Learning and gave the numerical 
results. Since September, he has tried several different Deep 
Reinforcement Learning algorithms (all components of the 
Rainbow) with the Recurrent Neural Network (LSTM) architecture; 
the best agent he has found is with the D3RQN (Dueling Double 
Deep Recurrent Q Network) with PER (Prioritized Experience 
Replay). 

Zihan Zhang, MASc 
student 

Zihan is a second-year Master’s student. She started to work on the 
battery prognostics project in April, 2020. She has studied 
more than 100 papers on the battery prognosis and finished a 30-
page literature review report this summer. She is designing a neural-
network-driven stochastic degradation process for battery 
forecasting. In addition to her independent project, she is guiding an 
undergraduate student from Mechanical Engineering and 
an MEng student working on the prognostic research project.  
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Name Activity 

Kide Zhou, IndE thesis 
student 

Kide is a fourth-year Industrial Engineering student currently 
working on the Kinross replacement policy project. This project aims 
to build a replacement and maintenance policy helping the company 
to manage the assets with the lowest operating and maintenance 
cost. The sensor data have been analyzed in terms of the asset 
working condition, and the statistical results were generated. Based 
on the findings, a policy will be generated. The project is now in the 
modelling process. 

Chengjiang Zou, MEng 
student 

Chengjiang Zou is a second-year graduate student pursuing his 
Master’s degree in Mechanical and Industrial Engineering. He is 
currently working on the CEA sequential pattern mining project. 
This project was assigned to him in the beginning of September. The 
project uses machine learning algorithms and codes to detect 
patterns and rules of equipment operation by inspecting the 
continuous records from CEA datasets on Spark. Sequential pattern 
mining algorithms are used on the CEA datasets to unlock the hidden 
patterns of the continuous records. As a result, a set of preventive 
maintenance policies are derived based on the output of sequential 
pattern mining. 
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C-MORE publications and presentations in 2020 

Journal papers published or accepted 
 

[1] Li, G., Yang, L., Lee, C.-G., Wang, X. & Rong, M. (2020). A Bayesian deep learning RUL 
framework integrating epistemic and aleatoric uncertainties. IEEE Transactions on 
Industrial Informatics, online (DOI 10.1109/TIE.2020.3009593). 

[2] Wang, J. (2020, forthcoming). Optimal sequential multi-class diagnosis. Operations 
Research. 

[3] Wang, J. (2020, forthcoming). Optimal Bayesian demand learning over short horizons. 
Production & Operations Management. 

[4] Wang, J., Levin, Y., & Nediak, M. (2020). Selling passes to strategic customers. Operations 
Research, 68(4), 1095–1115. 

[5] Huchuk, B., O'Brien, W., & Sanner, S. (2020, in press). Exploring smart thermostat users' 
schedule override behaviors and the energy consequences. Science and Technology for the 
Built Environment.  

[6] Olson, A. W., Zhang, K., Calderon-Figueroa, F., Yakubov, R., Sanner, S., Silver, D., & 
Arribas-Bel, D. (2020, in press). Classification and regression via integer optimization for 
neighborhood change. Geographical Analysis.  

[7] Say, B., & Sanner, S. (2020). Compact and efficient encodings for planning in factored 
state and action spaces with learned binarized neural network transition models. Artificial 
Intelligence Journal, 285: 103291.  

[8] Wu, G., Say, B., & Sanner, S. (2020). Scalable planning with deep neural network learned 
transition models. Journal of Artificial Intelligence Research, 68. 
 

Journal papers submitted or under review 
 

[1] Aboussalah, A., & Lee, C.-G. (2020). Symmetry-augmented representation for time series. 
ICLR, under review, October 2020. 

[2] Arasteh, M., Alizadeh, S., & Lee, C.-G. (2020). Gravity algorithm for the community 
detection of large scale network. Journal of Ambient Intelligence and Humanized 
Computing, under review, October 2020. 

[3] Babatunde, G., Lee, C.-G., & Sanner, S. (2020). Simultaneous estimation of discount factor 
and reward function in inverse reinforcement learning. AAAI, under review, September 
2020. 

[4] Chen, K., & Lee, C.-G. (2020). Incremental few-shot learning via vector quantization in 
deep embedded space. ICLR, under review, October 2020. 
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[5] Gimelfarb, M., Sanner, S., & Lee, C.-G. (2020). Bayesian experience reuse for learning 
from multiple Demonstrators. AAAI, under review, September, 2020. 

[6] Momodu, A., & Lee, C.-G. (2020). Trinomial tree methods for pricing Israeli options with 
uncertain volatility. Applied Mathematical Finance, under review, October 2020. 

[7] Xing, W., Chu, X., Lee, C.-G., Zou, Y., & Rong, Y. (2020). Using machine learning to 
classify images of melt pool surfaces in a selective laser melting process. Additive 
Manufacturing, revision under review, November 2020. 

[8] Yang, B., Xu, S., Lei, Y., Lee, C.-G., Stewart, E., & Roberts, C. (2020). Multi-source Transfer 
learning network to complement knowledge for intelligent diagnosis of machines with 
unseen faults. Mechanical Systems and Signal Processing, under review, August 2020. 

[9] Yang, B., Lei, Y., Lee, C.-G., Li, N., & Lu, N. (2020). Deep partial transfer learning network: 
A method to selectively transfer diagnostic knowledge across related machines. 
Mechanical Systems and Signal Processing, revision under review, August 2020. 
 

Conference presentations 
 

[1] Jardine, A.K.S. An analytic toolbox for optimizing Condition Based Maintenance (CBM) 
Decisions. Keynote presentation, APARM 2020, 9th Asia-Pacific International 
Symposium on Advanced Reliability and Maintenance Modelling, Vancouver, Canada, 
August 20-23, 2020 (virtual conference). 

[2] Jardine, A.K.S. Evidence-based physical asset management: preventive replacement and 
inspection. Seminar at National University of Comahue, Argentina, November 12, 2020 
(virtual presentation). 

[3] Jardine, A.K.S. An analytic toolbox for predictive maintenance decisions. Keynote 
presentation at Seminar on Asset Management, Universidad de Chile, Santiago, Chile, 
December 18, 2020 (virtual presentation). 

[4] Lam, J., & Lee, C.-G. Machine learning approaches to take your asset management 
strategies to the next Level. Maintenance, Reliability and Asset Management (MainTrain) 
Online Conference, Canada, September 15-16, 2020 

[5] Lee, C.-G. Technology panel discussion on emerging technology for asset management. 
Maintenance, Reliability and Asset Management (MainTrain) Online Conference, Canada, 
September 15-16, 2020 

[6] Xu, G., Jardine, A.K.S., & Azhari, F. Optimizing bridge maintenance management based 
on routine inspection data: Role of hazard modelling. OMAINTEC 2020: International 
Operations & Maintenance Conference in the Arab Countries. Saudi Arabia, December 15, 
2020 (virtual presentation). 

[7] Li, H., Sanner, S., Luo, K., & Wu, G. A ranking optimization approach to latent linear 
critiquing in conversational recommender System. 14th International ACM Conference on 
Recommender Systems (RecSys-20), online, 2020.  

[8] Luo, K., Yang, H., Wu, G., & Sanner, S. Deep critiquing for VAE-based recommender 
systems. 43rd International ACM SIGIR Conference on Research and Development in 
Information Retrieval (SIGIR-20), Xi'an, China, 2020. 

[9] Luo, K., Sanner, S., Wu, G., Li, H., & Yang, H. Latent linear critiquing for conversational 
recommender systems. 29th International Conference on the World Wide Web (WWW-
20), Taipei, Taiwan, 2020.     

[10] Najafi, S., & Makis, V. An optimal maintenance policy for a two-unit series system with 
general repair. IISE Annual Conference & Expo 2020, May 30-Jun 2, New Orleans, 
Louisiana, USA. 

[11]Najafi, S., & Makis, V. Comparison of two maintenance policies for a two-unit series 
system considering general repair. ICOR 2020 (International Conference on Operations 
Research), Toronto, June 18-19, 2020. 
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CEA: An audit of data encoding for multi-site 
maintenance records 
Kimia Taghvaei Ganjali 

Introduction 
 
Canadian Electricity Association (CEA) is a national leading electricity association in Canada 
representing many electricity companies. CEA was founded in 1891 and consists of senior 
executives from its Corporate Utility Members. CEA provides value added projects and services 
to improve the safety, security and sustainability of the Canadian electricity industry. These 
strategic projects are research outputs to improve the performance of utility members. 
 
Every electricity company under CEA’s wing uses the guidelines provided by CEA to record their 
equipment operating and outage data along with timestamps. Every system can have different 
failure modes, hence different types of outages for power plants. The process in which these 
outages are reported impacts the validity of the reliability measures. A framework is needed to 
ensure the quality of reported data is not as dependent on organizational and behavioral factors. 
     
The objective of this research thesis is to generate a framework for CEA and their utility members. 
This framework will help assess their records and build a consistency throughout all sites working 
with CEA. The framework will be built by auditing the data provided by CEA. Large data sets of 
all CEA sites will be audited and analyzed to generate a model and perform statistical analysis. 
Results of the analysis would then be compared to see if there are any similarities between the 
sites or if there are significant differences.  
 
Progress 
 
The project was broken down into four phases: business understanding, data understanding and 
prep, modelling, and evaluation. Each phase will be explained in this section. It also includes a 
summary of results. 
 
Business understanding 
 
In the early stages of the project, the focus was more on understanding the terminologies used by 
CEA and the guidelines they had for the sites. CEA manuals and reports were studied to acquire 
a greater background for the project. The important business terms for this project are listed 
below: 
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• State code: the state reported for the unit as per the manual. 

• Available states: 11, 12, ..16 
  - Outage codes (unavailable states): 21, 22, …25 
  - Only reporting changes in states (i.e. no consecutive state 11’s) 
  - The most important states for this study are 24 (maintenance outage) and 25 (planned 
outage) 

• Duration: duration of outage in hours. 

• Capacity: capacity of the unit. Have eight capacity groups and units should be classed 
based on their group 

 
Data understanding 
 
Once the objectives and CEA terms were understood, the project moved into a data analysis stage. 
The meaning behind certain attributes and conditions under which some entries were recorded 
was discussed with CEA to understand what is required for the analysis. A database was created 
to merge the large data files from different plants along with other reference tables needed for the 
analysis. The final dataset was then investigated to identify issues. Issues such as null values, 
duplicate entries, wrong data types were resolved. The result of the data prep stage was a clean 
dataset that was then split to create a separate file for every plant.  
 
Modelling 
 
There are two main models built for this project namely the data model and stats model. The data 
model takes the clean data file for every plant as an input and outputs a list of downtime durations 
for every capacity range. Initially, the focus of the model was on the operating codes but when 
discussed with the client, there was a need to further analyze the downtime codes (24, 25) and 
hence the adjustments were made.  
 
The model looks at the units within each capacity group and creates a list of maintenance outage 
and planned outage durations for that specific capacity group. If certain plants do not have units 
within some capacity groups, the list is empty for those ranges. The list is then sorted to create a 
histogram of all the data points and pass it to the stats model. This data model is created to avoid 
the manual work for different plants. 
 
The statistical model takes the list of downtime durations for every capacity group and outputs 
the name of best fitted distribution and its parameters. The model performs a statistical fit 
analysis by fitting the empirical distribution to the theoretical ones in the scipy stats package. The 
model compares the fitted distributions by calculating the parameters and error (SSE) and picks 
the one with the lowest discrepancy. Initially, all the distributions in the scipy package were 
studied which resulted in an extensive runtime hence the list was shortened to twenty known 
distributions.  
 
This model is an efficient method to see the resulting probability distributions for a range of sites. 
The results will then be evaluated to determine if there are statistically significant differences.  
 
Evaluation 
 
To get some preliminary results, the model was tested with a small number of instances. Ten sites 
were picked randomly and studied with one state code. Some of the preliminary results discussed 
with CEA are shown below. 
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Table 1. Instance results 
Plant number = 1405 State code = 24 

Capacity group 0-4 5-23 24-99 100-199 200-299 300+ 

Distribution 
name 

- exponential exponential - - - 

Parameters - (0.0, 
18.589) 

(0.0, 
12.297) 

- - - 

 

 
Figure 1. Instance histogram 

Table 2. Instance results 

Plant number = 6154 State code = 24 

Capacity group 0-4 5-23 24-99 100-199 200-299 300+ 

Distribution name - exponential - - - - 

Parameters - (0.0, 7.828) - - - - 

 

 
Figure 2. Instance histogram 
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Table 3. Instance results 

Plant number = 2057 State code = 24 

Capacity group 0-4 5-23 24-99 100-199 200-299 300+ 

Distribution name - logistics - - - - 

Parameters - (9.29, 7.61) - - - - 

 

 
Figure 3. Instance histogram 

 
After presenting these results to CEA, there was a note that the downtime for maintenance outage 
should not be more than a week and the case of 536 hours (plant 1405) was an error and should 
not be part of the list. Hence the downtime list should be evaluated for outliers before passing it 
to the stats model. The evaluation stage is a work in progress and the ideas are discussed in the 
next section.  
 
Future work 
 

The results obtained for each plant, state code, and capacity group combination should be 
organized in a chart for evaluation. There are two scenarios that could happen after studying 
several plant, state code, and capacity combinations: 
 

1. The resulting distributions are very different. 
2. The resulting distributions are similar (i.e. both exponential) but have different 

parameters. 
 
For case 1 the list of theoretical distributions could be further decreased. For case 2 the samples 
should be evaluated using their sample size, mean, and standard deviation to see if they are truly 
different. The next step is to present results to CEA as a framework. After reporting the results for 
downtime analysis to CEA, there is value in investigating the operating codes and understanding 
the difference between different available states and if all sites are reposting these consistently. 
The same method could be used as well as developing other methods of analysis.  
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UKMOD: spares selection for aircraft embarked 
on carriers 
Dragan Banjevic 

Background 
 
The problem was initiated by an e-mail from Tim Jefferis to Janet Lam on 2020-06-30: 
 

Hi Janet 
 
We have an interesting problem about spares optimisation. We are thinking about how we 
work out what spares to take onto the Carrier to support the embarked aircraft. We are 
going to start by looking at what the OEM suggests is required and see what system 
performance this gives us (in terms of flight hours generated, aircraft availability etc.) as 
we have a big simulation that will do this for us. When we find that this performance is 
less that we would like we then need to examine which parts / types of parts are causing 
this shortfall and what could best be done about this. There are naturally constraints that 
the value and weight of the spares pack.  
 
I am aware that there are simulation packages that will do this work, when one is 
optimising for something deterministic, such as stock out risk for a large fleet with 
constant usage, we have an issue that we have to run simulation to see what performance 
our spares back gives us and so I want to find some structured approach that doesn’t result 
in us layering one simulation on top of another.  
 
Any thoughts about who knows about this would be appreciated.  
 
My feeling is that we probably need to divide the spares into two classes, those with 
relatively high usage, whose absence will constrain the total number of flight hours 
achieved and those with low usage whose presence is an insurance policy. One could then 
trade cost / weight invested between these two types as having more high usage spares will 
give an increased number of flight hours that might be achieved, but having more 
insurance spares will increase the probability of actually achieving a given number of flight 
hours, without hitting a mission critical failure that you haven’t provided a spare for.  
 
Many thanks  
Tim Jefferis 
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Problem description 
 
This e-mail was followed by several exchanges describing the problem and possible approaches 
to its solution. It is not clear how to summarize all aspects of the problem in a meaningful model 
that can be solved simply. The exact objective of the optimization is not even clear. Let us try to 
describe basic aspects of the problem, as we understand them, to help us to suggest an approach 
to the solution. A more formal mathematical model needed for actual calculation is described later 
in the document. 
 
The carrier stays on a mission for specified time period, e.g., six months, without 
returning to the port. It embarks certain number of aircraft that will go on flying missions (sorties) 
on time to time. 
 
Every aircraft is a complex system consisting of a large number of components. 
Some component can fail during the mission and has to be replaced to make the aircraft available. 
It is assumed that those components are not repairable, at least not on the carrier. By our 
assumption, the problem does not include repairable components. We assume that an aircraft 
cannot fly without any of those component, that is, it is a series system of those components. 
We are only concerned with aircraft components, not with the carrier components. 
 
The number of replaceable component is large, say, more than 1000. Some of them are 
consumable component that are replaced on regular bases and their number can be predicted 
fairly accurately in advance. Their number and storage can be excluded from this consideration. 
The life of other components cannot be predicted in advance, as it is assumed they fail at random. 
So we need to store some of them on the carrier, for insurance. If some of the components are 
subject to planned replacement, that numbers should also be separated from unplanned 
replacement (similar as for all cases that can be predicted in advance). 
 
The main question is what components to store on the board, and in what numbers. 
To do this, we need some way to classify them into classes. There are several approaches to 
classification, as mentioned in e-mails discussion. Some components are small, some are big, 
some fails more often, and some fail rarely. But, the key point is whether they can be replenished, 
if needed. Some components cannot be replenished during the carrier mission, and some of them 
can be flown in on a regular basis. Replenishment mostly depends on the component size. So, we 
will assume there are periodic replenishments during the mission, and classify all components 
into “replenishment levels”, depending on the frequency of their replenishment. “Level 1” includes 
bulky components that cannot be replenished during the mission, before returning to the port, 
“level 2” that can be replenished only once, say in the middle of the mission, “level 3” two times 
over the mission, and so on. Selection of the levels will depend on actual replenishment strategy 
that should be discussed with the user. Why is this classification by replenishment important? 
Because we need to store an appropriate number of spares that can last between replenishments, 
according to the objectives. 
 
Constraints on the storage of spares. The storage space for spares on the board is limited. 
The cost of keeping the spares on the board also can be limited. In our approach we will consider 
space limitation. Every component (one unit) occupies known amount of space. By assumption, 
the space occupied by one component type = space for one x # of the units. The total space 
occupied is sum of spaces occupied by all types. Due to limitations and demand some components 
may even not be stored. Our approach is to fix/reserve storage space for every replenishment level. 
Otherwise, the complexity of the problem would increase significantly. An interesting question is 
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whether failed spares reoccupy their space in the storage, or that space can be reassigned. This 
question is not only of practical importance, but may affect the mathematical model, as we shall 
see later. 
 
Demand for spare parts. One of the difficult problems is to reasonably describe demand for 
component. It, obviously, depends on the flying hours consumed by aircraft in every mission and 
the number of missions. This problem would be almost impossible to solve if we don’t assume a 
constant demand per hour for every component. This would be a reasonable assumption if the 
number of aircraft is not very small (say, it is not less than 10), and if aircraft are not (all) new, 
that is, the components have some hours on them (at least, a reasonable part of them). Even if 
those assumptions are not met, the assumptions of constant demand rate would give a 
conservative solution that will not be far from optimal one. At least, we can use it as an initial 
assumption. In that case, the demand does not depend on the separate aircraft or the number of 
sorties, but on the total number of flying hours for each aircraft. We assume this number is known 
in advance (at least approximately). More technical details about this assumption will be 
considered later. 
 
Optimization objective. This is another difficult problem that was not cleared up in the e-mail 
discussion. We need to quantify it somehow. The cost of the mission is part of a different 
calculation. It can be assumed that the overall cost is not a limiting factor for the spare parts 
problem, so that the mission success is the main objective. The mission success can be measured 
in several ways. Useful measures are aircraft availability and mission reliability, that is, the 
probability that there will not be a shortage of spare parts during the entire mission. We should 
consider this problem in more details. Let, say, there are 40 aircraft on the carrier, and 20 are 
required for every mission. It means we need at least 20 units of every component operational (or 
20 aircraft with all components working) and spares to support them. The mission reliability will 
be the probability that we will have at least 20 aircraft available for flying through the mission 
time. This will be the same as availability of 20 aircraft over mission time. This approach includes 
possible cannibalization of spare parts, as they can be obtained from aircraft not required for 
flying. In a case of only non-replenishable spare parts (“level 1” spare parts), possible non-
availability time (time with less than 20 aircraft ready to fly) would be at the end of the mission 
time. With more levels involved, non-availability time may occur prior to ends of replenishment 
intervals.  The reliability of the stock is calculated as the product of reliabilities of all required 
components. The mathematical formula is described later.  
 
The goal of the study will be to maximize the overall reliability of the stock with 
constraints on the storage space.  
 
Mathematical model 
 

1. The carrier embarks 𝑛 aircraft that will go on flying missions on time to time. Every flying 
mission (sortie) requires 𝑘 operational aircraft, 𝑘 ≤ 𝑛, at any time during total mission 
time 𝑡 = 𝑇 (total time for all missions). 

2. Every aircraft requires 𝑀 replaceable nonrepairable components (component classes) to 
be able to fly. The components fail at random, with constant failure rates (per hour) 
𝜆1, 𝜆2, … , 𝜆𝑀. We assume that all components are different and that we need one of each. 
If more than one component of the same class is needed (e.g., on the left and right wing), 
we can consider it as a single component with doubled failure rate. In that sense, we 
consider an aircraft as a series system with 𝑀 different components. We also assume that 
failures of different components are independent. 
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3. We classify components by replenishment levels (see above), that is, by time horizon in 
which they cannot be replenished; e.g., bulky components cannot be replenished through 
the total mission time 𝑇, except at the beginning of the mission. For example, the stock 
can be replenished two times during the entire mission, making each replenishment 
interval of length 𝑇/3 (replenishment takes place at the beginning of an interval). The 
intervals need not be of the same length. Thus, we have three replenishment intervals 
[0, 𝑡1), [𝑡1, 𝑡2), [𝑡2, 𝑇). For every component, we have replenishment times and appropriate 
replenishment intervals lengths. For example, for bulky components, there is no 
replenishment time except at time = 0, with one interval of length T. If a component can 
be replenished two times, at 0 and 𝑡2, it has two replenishment intervals, with lengths 𝑡2 
and 𝑇 − 𝑡2. All components with same replenishment strategy belong to that 
replenishment level.  For a component in level 𝑖, replenishment interval lengths are 
𝑡𝑖1, 𝑡𝑖2, …, with ∑ 𝑡𝑖𝑗𝑗 = 𝑇. This is important because the reliability of the component will 

depend on its set  𝑡𝑖1, 𝑡𝑖2, … . This approach describes a fairly flexible replenishment policy, 
depending on availability of aircraft. Note some components may not have any 
replenishment, e.g., highly reliable and/or very bulky. But they are in every aircraft and 
might be available for cannibalization. We assume replenishment strategies are fixed in 
advance and are part of other logistics beyond this project. 

4. Assume L replenishment strategies/levels 𝐴1, 𝐴2, … , 𝐴𝐿 and every component belongs to 
one of them. Let 𝑡𝑖1, 𝑡𝑖2, …  are replenishment intervals lengths for level 𝑖. Denote by 𝑎𝑖𝑗 the 

component 𝑗 belonging to level 𝑖, or 𝑎𝑖𝑗 ∈ 𝐴𝑖, and by 𝜆𝑖𝑗 its appropriate failure rate. Let 

𝑚𝑖𝑗𝑙 , 𝑚𝑖𝑗𝑙 ≥ 0 be the number of stocked units of component 𝑎𝑖𝑗 in an interval of length 𝑡𝑖𝑙. 

(a)  In general, if 𝑘 units are required to work over an interval of length 𝑡, and we look at 
the single component with failure rate 𝜆, the probability that the demand (number of 
failures) in that interval is less than equal to 𝑚 (reliability of a stock of size 𝑚) is 

∑
(𝑘𝜆𝑡)𝑥

𝑥!
𝑒−𝑘𝜆𝑡𝑚

𝑥=0 . We now can apply this formula to our case.  

(b) If we consider cannibalization (components are interchangeable), we assume that the 
components from other aircraft are available as additional spares. If the total number 
of aircraft is 𝑛, and 𝑘 of them are required for one mission, then the number of 
additional spares is 𝑛 − 𝑘. For the component 𝑎𝑖𝑗, with the stock 𝑚𝑖𝑗𝑙 in the interval of 

length 𝑡𝑖𝑙 , the reliability of the stock is 𝑅𝑖𝑗𝑙(𝑚𝑖𝑗𝑙) = ∑
(𝑘𝜆𝑖𝑗𝑡𝑖𝑙)𝑥

𝑥!

𝑛−𝑘+𝑚𝑖𝑗𝑙

𝑥=0 𝑒−𝑘𝜆𝑖𝑗𝑡𝑖𝑙 . Then the 

reliability for that interval (for that level 𝑖) is 𝑅𝑖𝑙 = ∏ 𝑅𝑖𝑗𝑙(𝑚𝑖𝑗𝑙)𝑗 . Finally, the reliability 

of the stock for that level is 𝑅𝑖 = ∏ 𝑅𝑖𝑙𝑙 , and then the overall reliability is 𝑅 = ∏ 𝑅𝑖𝑖  . 
This model assumes that any component that is cannibalized is replaced (restored) at 
the next replenishment instant, if this exists. Without this assumption, the problem 
would be quite more complex.  

(c) If we don’t assume cannibalization, the problem becomes mathematically more 
complex. If the stock for one component is exhausted, the aircraft requiring the 
component cannot fly and should be replaced with another aircraft. We can find a 
stock optimal for 𝑘 aircraft in use, if 𝑘 is not far from 𝑛, or we can assume all 𝑛 aircraft 
are in use (𝑘 = 𝑛), but with failure rates for components per actual mission hour, not 
per flying hour. In both cases, the actual reliability will not be smaller than the 

calculated one. So reliability formula 𝑅𝑖𝑗𝑙(𝑚𝑖𝑗𝑙) = ∑
(𝑘𝜆𝑖𝑗𝑡𝑖𝑙)𝑥

𝑥!

𝑚𝑖𝑗𝑙

𝑥=0 𝑒−𝑘𝜆𝑖𝑗𝑡𝑖𝑙 can be used. 

5. Let the total storage space be 𝐶. Assign fixed storage space 𝐶𝑖, ∑ 𝐶𝑖𝑖 = 𝐶 to level 𝑖. If one 
unit of the component 𝑎𝑖𝑗 requires space 𝑐𝑖𝑗  for storage, then at the replenishment point 

of interval 𝑡𝑖𝑙 the occupied space is  ∑ 𝑐𝑖𝑗𝑚𝑖𝑗𝑙𝑗 , with constraint ∑ 𝑐𝑖𝑗𝑚𝑖𝑗𝑙𝑗 ≤ 𝐶𝑖 for every 𝑙. 

Thus, at every replenishment point we have up to 𝐶𝑖 space available. The storage space 
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constraints can be combined with constraints on the stock cost and handling, penalty for 
missing stock, etc., but we will not discuss it here.  

6. Our objective is to find stock  {𝑚𝑖𝑗𝑙} and stock boundaries 𝐶𝑖 that maximize the overall 

reliability 𝑅 = ∏ 𝑅𝑖𝑖  under the constraints  ∑ 𝑐𝑖𝑗𝑚𝑖𝑗𝑙𝑗 ≤ 𝐶𝑖, 𝑖, 𝑙 = 1,2, … . 

 
Optimization algorithm 
 

In our approach to optimization, we can proceed in two steps. First, we find the optimal stock 
{𝑚𝑖𝑗𝑙} that depend on fixed storage boundaries {𝐶𝑖} , and then optimize the storage boundaries 

{𝐶𝑖} under the condition ∑ 𝐶𝑖𝑖 = 𝐶. For the first step, the optimization reduces to separate 
optimizations for every time interval 𝑡𝑖𝑙, with just one condition: for given (𝑖, 𝑙) find {𝑚𝑖𝑗𝑙} that 

maximizes 𝑅𝑖𝑙 = ∏ 𝑅𝑖𝑗𝑙(𝑚𝑖𝑗𝑙)𝑗  (or 𝑙𝑜𝑔𝑅𝑖𝑙 = ∑ 𝑙𝑜𝑔𝑅𝑖𝑗𝑙(𝑚𝑖𝑗𝑙)𝑗 , which is more convenient, as an 

additive function; we can drop the factors 𝑒−𝑘𝜆𝑖𝑗𝑡𝑖𝑙 from optimization procedure, as they don’t 
depend on 𝑚𝑖𝑗𝑙 or 𝐶𝑖) under the constrain ∑ 𝑐𝑖𝑗𝑚𝑖𝑗𝑙𝑗 ≤ 𝐶𝑖. Several known algorithms can solve this 

first step with single constraint (e.g., Kettelle’s algorithm and its extensions). In reality, we would 
not expect more than two or three boundaries 𝐶𝑖, so the second step would not be a big problem. 
 
The dimensionality of the problem (the number of components) can be large (as is it in this real 
study) and can affect the calculation. It can be reduced significantly by grouping of components 
that take similar space inside single level. A group of components with equal or similar storage 
space per unit can be replaced by a “representative component” with the unit storage space equal 
to the average of the group and failure rate equal to the sum of failure rates of the group. After the 
final optimization, the number of spares for a single component from the group can be calculated 
as proportional to its failure rate out of the total number of spares for the group. As a starting 

point (𝑚𝑖𝑙 = 𝑚𝑖), we can take 𝑚𝑖𝑗𝑙 ≈
𝜆𝑖𝑗

∑ 𝜆𝑖𝑗𝑗
𝑚𝑖, and calculate 𝑚𝑖 from the condition ∑ 𝑐𝑖𝑗𝑚𝑖𝑗𝑙𝑗 ≈ 𝐶𝑖, 

or 𝑚𝑖 ≈
∑ 𝜆𝑖𝑗𝑗

∑ 𝑐𝑖𝑗𝜆𝑖𝑗𝑗
𝐶𝑖, thus using actual storage sizes 𝑐𝑖𝑗. Then, 𝑚𝑖𝑗𝑙 ≈

𝜆𝑖𝑗

∑ 𝑐𝑖𝑗𝜆𝑖𝑗𝑗
𝐶𝑖. In this approach, 

stock sizes do not depend on 𝑙 (time intervals 𝑡𝑖𝑙), but on available space 𝐶𝑖. Even if we include 
time through demand of a component, as 𝜆𝑖𝑗𝑡𝑖𝑙, and divide 𝑚𝑖 proportionally to demand, results 

for 𝑚𝑖 and 𝑚𝑖𝑗𝑙 will remain the same as above; the factor 𝑡𝑖𝑙 will cancel in the ratio. After using 

those initial values 𝑚𝑖𝑗𝑙
0 , we can find initial values 𝐶𝑖

0 by minimizing 𝐶𝑖.  
 

The policy may be improved dynamically to assign space from levels that cannot be replenished 
to upper levels that can, if needed. The same algorithm can be applied to maximize reliability of 
the stock that can be replenished. Global optimization of this policy would be quite hard, but doing 
it dynamically, one step at the time would not be a problem. Dynamic programming approach can 
be considered for global optimization, with optimization steps at every replenishment point. This 
approach works, obviously, if failed components can be stored outside the stock space; 
otherwise, the complete space is occupied all the time, with either unused units or failed units. 
 
An illustrative example 
 

1. A carrier is on a mission for 6 months. It embarks 𝑛 = 18 aircraft, of which 𝑘 = 12 are 
required for missions over 6 months (obviously, not always the same 12).  

2. There are 50 replaceable components on an aircraft of interest for storage. Some other 
components may be highly reliable, or cannot be replaced during the mission, and they are 
not considered for storage. 15 components are large and cannot be replenished during the 
mission, and 45 can be replenished once, after 3 months in the mission, by fly ins. 
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3. So we have two replenishment levels, 𝐿1 with one replenishment interval 𝑡11 = 6 months 
and 15 components, and 𝐿2 with two replenishment intervals 𝑡21 = 3 months and 𝑡22 = 3 
months, and 45 components. 

4. We initially assign 60% of the available storage space to level 1 components, and 40% to 
level 2 components. Using components’ failure rates and storage spaces per components 
units, we can find initial stock sizes for level 1 (one interval), 𝑚1,1,1, 𝑚1,2,1, … , 𝑚1,15,1, and for 

level 2, for first interval, 𝑚2,1,1, 𝑚2,2,1, … , 𝑚2,45,1, and for second interval 

𝑚2,1,2, 𝑚2,2,2, … , 𝑚2,45,2. As those two intervals are of the same length, the spare stock sizes 

will be same (see Figure 1).  
5. After final calculation, it is possible that some components are excluded from storage (they 

are either too bulky, or reliable enough), and that storage levels spaces are assigned 
differently, e.g., 52% to level 1, and 48% to level 2. 

6. After three months, if we can use dynamic policy, and some bulky (level 1) spare component 
were used, assume that 10% of space was left unoccupied. We can increase storage space for 
level 2 to 50%, for last three months, if needed (see Figure 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Static space policy, 60% space for bulky, 40% for replenishable  
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

 
Figure 2. Dynamic space policy, storage space increased by 10% of the total for 
replenishable components 
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Kinross: A business case for machine learning 
methods, a progress report 
Hao Zhou 

Introduction 
 
Kinross Gold Corporation is a Canadian-based gold and silver mining company founded in 1993 
and amalgamated by three companies: Plexus Resources Corporation, CMP Resources and 
numbered company 1021105 Ontario Corp. Kinross is headquartered in Toronto and currently 
runs eight active gold mines in multiple countries, including Brazil, Russia, Mauritania, and 
Ghana. It was ranked the fourth of gold-mining companies in 2017 by InvestNews. 
 
The company possesses a huge number of transportation assets, such as trucks transporting the 
gold from mining sites to multiple facilities. Because these assets are quite expensive, the 
maintenance and repair costs are also high. Therefore, the asset management group is seeking a 
solution or a model to help them manage their assets by giving them an early warning system 
about assets’ conditions to avoid shut downs so that in-progress work will not be influenced. The 
early warning system allows the company to make specific plans on maintenance to avoid 
unexpected mechanical issues, which can minimize the operating and repairing cost. 
 
Background and motivation 
 
Replacement and maintenance problems involve items that degenerate with use or the passage of 
time resulting in failure after a certain amount of time or use. Items that deteriorate are likely to 
be large and costly to repair such as machines, trucks, and home appliances (refrigerators). Non-
deteriorating items are usually small and relatively inexpensive, such as light bulbs or vacuum 
tubes. Deteriorating items require maintenance more frequently to ensure efficiency and 
functionality with the increment of use. In addition, the salvage value will be reduced with a longer 
operating time of such items. Finally, it is more cost-saving to purchase and run a new item than 
paying high maintenance fees doe old ones. However, if the item is replaced frequently, the 
investment costs will significantly increase. Thus, the maintenance problem is to determine when 
to replace such items and how much maintenance (particularly preventive) should be performed 
so that the sum of the operating, maintenance, and investment costs is minimized. 
 
Analysis of historical data would help Kinross design a maintenance strategy and early warning 
system before assets shut down while working. This would help to figure out the consumption rate 
of each component on the assets. Ultimately, based on the records, a general ML model or 
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mathematical model could elicit the factors resulting in the reduction of engine power and come 
up with a plan that provides maintenance suggestions periodically to prevent shut down. 
 
Under the main target stated above, several sub goals have been proposed by the company in the 
different stages and listed in the next section. The project will start with exploratory data analysis 
(EDA), helping the asset management group find the relationship between the “Engine Power 
Derate %” and other sensor data. The next step is to deeply analyze the root cause of the decrease 
in engine power in terms of other factors. Finally, when these data are combined with current 
repair records, we will provide suggestions about when the engine needs maintenance and when 
other parts of machines need to be replaced to ensure the asset’s working functionality. 
 
Secondary objectives 
 
The project has four states. As shown in Table 1, the first stage is to find out when the engine 
experiences derating. For example, given that the peak air filter restriction is around 8 (normal 
values are 0 to 6.5 kPa) and atmospheric pressure is 110kpa (normally 101 kPa), the model should 
be able to recognize when engine power derates. The second stage is to find out the Engine Power 
Derate % under certain conditions based on the first stage using input data from other sensors. 
The third stage is based on the Engine Derate %, with the percentage divided into four levels. The 
final stage is to provide a maintenance and replacement policy helping the company schedule 
maintenance periodically with the lowest cost followed by an optimal model or equation 
 
Table 1. Targets in various stages 

Stage number Targets 

Stage 1 Figure out when engine derating occurs 

Stage 2 Figure out Engine Derate % 

Stage 3 Divide data into four levels: 

-Level 1: causes the involved system alert indicator 

to illuminate 

-Level 2: operation of the machine should be changed 

-Level 2s: possible severe damage to components on 

the machine may occur 

-Level 3: machine needs to be shut down 

immediately 

Stage 4 Model construction to provide optimal policy 

 

As shown above, stage 3 has four levels; each level corresponds to different engine conditions, 
requiring different actions to be performed: 
 

• Level 1 is the warning level and will cause the system alert indicator to illuminate. A level 
(1) warning indicates that the operator should be aware of a condition of one or more of 
the machine systems. 

• Level 2 indicates that the operation of the machine should be changed or maintenance 
should be performed. Possible damage to components on the machine may occur. 

• Level 2-S indicates that the operation of the machine should be changed or maintenance 
should be performed; there is a possibility of severe damage to components on the 
machine. 
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• Level 3 indicates that the machine needs to have an immediate, safe emergency engine 
shutdown process. Possible injury to the operator or severe damage to components may 
occur. 

 
Data 
 
Various types of data in terms of the machine are recorded in the raw dataset. The asset 
management group selected six main features from the raw dataset. Table 2 displays the feature 
names and detailed descriptions. 
 
Table 2. Feature categories 

Feature Name Description 

Asset Number Unique ID of each asset 

In total 5 assets are recorded from DT82 to DT86 

Timestamp Time series data record when sensors report data to 

the backend. 

15 are performed per month (12 month from 2019 

and 3 month from 2020) 

Loaded Record if the machine is in the loading condition. 

Reported in binary value. 

1: Fully loaded 

0: Not fully loaded/unloaded 

Moving Record the moving condition of the machine. Binary 

value. 

1: Moving 

0: Stationary 

Service Hour Record the total service hour corresponding to each 

timestamp. 

Speed Moving speed while operating the asset 

corresponding to each timestamp. 

Sensors 4 essential sensors are included in the raw datasheet, 

reporting the machine condition. 

-Engine Power Derate % 

-Peak Air Filter Restriction 

-Right minimum Left Exhaust Temperature (RT-LT 

EXH Temp) 

 

This dataset contains 4 types of sensors. From the company’s perspective, “Engine Power Derate 
%” is the target feature in this project; the rest are the most important and correlated sensors to 
the target feature. All these sensors record and report different data at 10 to 15 second intervals 
to reflect the real-time working condition of assets. Each sensor has a threshold value. Once the 
reported data exceed such values, a warning light or alarm will occur. Detailed descriptions are 
listed below. 
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Engine Power Derate % is used to request and read the present engine power derating 
percentage. 0 value indicates engine power if NOT derated and 25 is the maximum percentage an 
engine can hold. 
 
Atmospheric Pressure Sensor is a device that generates a signal proportional to atmospheric 
pressure. This is usually an analog sensor. It is reported in kPa and the default sea level is 101kPa. 
There will be a reduction in the performance of the engine if there is a restriction in the air inlet 
system or the exhaust system. The air flow through the air cleaner may have a restriction. The 
pressure at the restriction of the air flow must not exceed 6.25 kPa. 
 
Peak Air Filter Restriction is the device to show the peak air filter restriction for a given 
period of time. The engine ECM calculates the value by subtracting the atmospheric pressure 
value from the turbo inlet pressure value. It indicates the degree to which the engine air filter is 
plugged. Engine power is derated 2% per kPa of pressure difference above 6.5kPa, up to a 
maximum value of 20% total engine derate. If the engine ECM senses that either one of the 
pressure sensors are sending an incorrect value, the engine power is also derated up to 20 percent. 
 
RT-LT EXH Temp are numerical data calculated by subtracting the left manifold exhaust 
temperature from the right manifold exhaust temperature. The data are reported in Celsius and 
the normal range is from -20 to 20. The outbound of the normal range will lead to a stage one 
alert. 
 
Exploratory data analysis 
 
Initially, I divided the data based on the asset number as well as the sensor types, since all data in 
the raw dataset are mixed together [Appendix A]. While separating the dataset into smaller one 
based on the asset number, I found that some assets’ engine power derating only contain binary 
values (either 0 or 25) such as DT83, but others such as DT85 contain continuous values (from 0 
to 25 in every 0.5 intervals) [Appendix B]. Based on the company’s interpretation, the data in 
assets such as DT83 were discretized into binary form. As the company wants to use the ML 
techniques to model the derating percentage in the stage 2, the project will mainly focus on using 
continuous data. If we take both binary and continuous data into consideration, the model may 
not be able to learn the correct trends and return a reliable result, because even though the engine 
derates 8%, it is displayed in the dataset as 25%. Thus, all work in the first two stages will be 
carried out based on the data of asset DT85. 
 
To find the relations between target feature (Engine Derate %) and others, and when engine 
derating occurs in the first stage of the work, a new feature named “If Derate” was elicited in 
binary values. The feature describes if engine power is derating corresponding to the specific 
timestamp, because in the first stage, the target is to explore when the engine power is derated. 
This feature can enhance the correlations between target features and other factors regardless of 
the continuous value of the derating percentage. With this new target feature, the model will only 
consider if there a deration occurs, but not consider how much it derates. 
 
While cleaning the data, I found that the amount of data was inconsistent. As shown in Figure 1, 
in 2019, 15245 timestamps were recorded in the raw dataset for DT85. However, none of the 
sensors contained the same number of records. For example, Engine Power Derate % contained 
15239 records and Atmospheric Pressure only had only 15093 records. For consistency, I 
manually supplemented the missing data by giving a NULL value to ensure all four sensors 
reported correct data at the correct timestamp, so that I could use them to build the ML model. 
After removing the NULL value, 15093 data were left in the dataset. 
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Figure 1. Total count of records of each sensor for DT85 

 
After cleaning the data, I checked the correlations. As shown in Figure 2, the strongest correlation 
between If_Derate and other sensors was only 0.3652 which is relatively weak in general. To 
figure out the potential reason for such a low correlation, I created a scatter plot. 

 
Figure 3. Correlations before dropping NULL values and removing outliers 

 
In the scatter plot, the target feature (Engine Power Derate %) was the y value and other sensors’ 
data were the x value (Figure 4). From the plot, I found some data were outliers which may 
adversely impact the model construction in a future stage. For example, the normal value range 
of RL_LT EXH Temp Sensor was between -20 to 20, but some values less than -30000 appeared 
in the dataset. Such values are impossible in the general physical environment and should be 
removed. 
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Figure 4. Scatter plot of RL-LT EXH Temp 

 
After removing outliers, I wrote a function to check the amount of data where engine power 
derates. Out of a total 15026 data, 2933 data have a value greater than 0 (Figure 4). However, this 
is an imbalanced condition because the number of “0” values is around 5 times more than the 
“1”s. To improve the imbalance, I applied a heuristic cut to remove some data. For example, all 
assets under 8400 hrs service time have no deration in engine power. I removed all these data 
and reformed the dataset.  
 

 
Figure 5. Filter function of Engine Power Derate % 
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Model construction 
 
After the EDA process, I built a ML model to predict when there will be a reduction in the engine 
power given a set of input data. Initially, the dataset was divided into a training set which 
contained about 75% of the data, and a validation set including 25% of the data. In the previous 
process, I noticed that the imbalance condition still exists in the dataset. To combat this, I decided 
to upsample the data. Before using upsampling, the amount of “If_Derate ==1” is 2933, but there 
were 11160 rows where “If_Derate ==0”. The upsampling method returned an equal amount for 
both types of data, 11160.  
 
I used both logistic regression and Randomforest method to build the model. Logistic regression 
is a method returning a binary value (either 0 or 1) as the final result. In the mode, we set a 
threshold value; any predicting result below this threshold would be 0 and above this value would 
be 1. Compared to logistic regression, the Randomforest method has more parameters allowing 
us to adjust and optimize by using a grid search to produce the best results. The Randomforest is 
a supervised learning algorithm. It consists of multiple low correlation decision trees and merges 
them together to get a more accurate and stable prediction. The Randomforest follows a majority 
rule helping to make decisions. For example, if 10 decision trees are presented where 7 return the 
result “1” and the rest return “0”, the final result will be “1”. 
 
I chose the parameters carefully based on the dataset, and provided multiple input values to run 
through the grid search (Figure 6). The best results were then returned. Other models like linear 
regression and decision tree are not much help because our target value in stage 1 is “If_Derate". 
 
The result of the logistic regression is presented in Figure 7; both the training and testing accuracy 
are around 0.2. Low correlations between target features and others may lead to such a result, as 
the trend cannot be studied properly by the model. However, although I applied the Randomforest 
and the result showed a certain increase, it was still not ideal (Figure 8); the training score was 
approximately 0.25 and the testing score about 0.37. 
 

 
Figure 6. Grid search result 

 

 
Figure 7. Predicting accuracy of logistic regression 

https://builtin.com/data-science/supervised-learning-python
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Figure 8. Predicting accuracy of Randomforest 

 
The results shown above suggest the ML model may be not an appropriate way to predict when 
there will be a reduction in engine power. Low data quality may be a contributing factor leading 
to such a result as the correlations between target features and others are too weak. Some 
problems related to the data are listed below and future work is proposed later in the report to see 
how other methods can be applied to find a solution. 
 
Issues and findings 
 
This section mentions some issues we encountered while doing the EDA and building the model. 
We were left with two major questions in terms of the data. 
 
Normally, sensors report data every 10 to 15 seconds. However, sometimes, sensors report NULL 
values or even do not report real-time data as mentioned previously. A glitch in the sensors and 
network delay may be a possible interpretation of this problem. As shown in Table 3, there were 
15245 records in year 2019, but all sensors reported less than that number. 
 
Table 3. Total count of records of each sensor for DT85 

Feature Name Amount of Data 

Timestamp 15245 

Engine Power Derate Percentage 15239 

Peak Air Filter Restriction 15191 

RT-LT EXH Temp 15021 

Atmospheric Pressure 15093 

 

The second problem is that the “Engine Power Derate %” displays a deration, but other sensors 
report normal values.  
 
As stated previously, only asset DT85 has continuous data for Engine Power Derate % displaying 
at 0.5 intervals from 0 to 25 (Appendix A). Others are binary values (either 0 or 25). Therefore, 
the analysis focuses on the DT85. While doing the EDA, after removing the outlier and doing the 
heuristic cuts, the strongest correlation was 0.36544 which increased a little compared to the 
original one. Nevertheless, this correlation is still quite weak. 
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Figure 9. Correlations after removing NULL values and heuristic cuts 

To figure out why the correlation is so weak among target features and other sensors, I used a 
scatter plot analysis. Based on Figure 10, for “Peak Air Filter Restriction Sensor”, about a third of 
the data were over 6.25 kPa when engine power derating occurs; this matched the correlations 
between this sensor and target feature. However, for the Atmospheric Pressure Sensor, the 
majority of data were in the normal range when power was reduced. Very limited data were out 
of normal range leading to derating. A similar trend was displayed in RT-LT EXH Temp Sensor, 
where most are located between -20 to 20 when engine power derates. In addition, when these 
sensors showed the machine had problems, the decrease in engine power remained. 

 

 
Figure 10. Scatter plot of sensors 

 

To check how many times engine power derating occurs for DT85, I counted the total amount of 
data which were out of the set threshold. The result is displayed in Figure 11. In total, 2933 times 
of power reduction happened for the engine, but the atmospheric pressure sensor only reported 
8 anomalies, the peak air filter sensor reported 296, and the RT-LT EXH Temp showed 526. After 
doing the simple subtraction (2933 - 8 - 296 - 526 = 2103), there were still 2103 times that the 
engine power sensor reported issues, but other sensors reflected everything was working well. 
 



42 

 

 
Figure 11. Counting out of control data for each sensor 

 
The findings shown above are quite contradictory, because initially we believed the three sensors 
would be the main contributing factor leading to derated engine power. One possible 
interpretation is that there are some other important sensors not presented in the dataset, such 
as the power supply of the battery, the temperature of engines, and carbon deposition issues. All 
these factors have a certain impact on the power system leading to the reduction of engine power 
from a mechanical engineering perspective.  
 
Future work 
 
Based on the questions above, too many factors are unknown. The truck has a very complex power 
system structure, and the engine power is related to all components, so it is hard to draw 
conclusions based on the data we possess. More information is required on the power system. In 
addition, the dataset currently only has 15 months of data and is in an imbalanced condition, 
which may be not sufficient for the model to catch the trend appropriately. Therefore, additional 
data with higher quality are necessary for future work. 
 
The next step is to improve the current ML model to see if it is a feasible way to find out under 
what condition the engine power derates, because it is hard to apply ML in the maintenance & 
replacement field. If the accuracy is still at a low level, then in future work, we have to change the 
methodology to solve the problems instead of seeking ML solutions. 
 
Once the methodology has been determined, the work can be moved to stage 2, looking for the 
specific derating % by giving the input. 
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Appendix A: Value of Engine Power Derate %: 
 
DT85’s value is in continuous form 

 
 

Other assets’ values are in binary form (either 0 or 25) 
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TTC: Detecting power rail anomaly from FLIR 
thermal images 
Tushar Aggarwal 

Background (from 2018 student report) 
 
TTC Line 3 Scarborough is a 6.4KM light metro line connecting 6 stations from Kennedy to 
McCowan. It’s about 40 years old now and going to be replaced by the planned extension of Line 
2 Bloor-Danforth subway to Scarborough Centre. While the new project being built, TTC still need 
to keep Line 3 running.  
 
In May 2017, a train was damaged during operation, because a power rail anomaly caused high 
temperature which melted the metal. This resulted in passenger evacuation and line closure.  
 
Problem 
 
As a preventative measure and to avoid any interruptions on Line 3. TTC regularly scan the power 
rails with FLIR thermal cameras installed on the back of the trains. The thermal camera videos 
are then reviewed by TTC staff to identify any anomalies and high thermal heat zones on the power 
rail which are fixed by the maintenance staff. 
 
However, this is a manual and cumbersome task as all the videos are required to be observed 
which can be difficult as it requires long-span focus. Therefore, using a computer vision system 
for anomaly detection could replace this cumbersome task. Therefore, TTC has tasked C-More 
Labs to develop an anomaly detection project that uses the recorded FLIR thermal videos and is 
able to identify anomalies on power rails if it exists in specific frame.  
 
Approach 
 
For the previous approach the student used a Opensource TensorFlow Object Detection API 
where the student used two different convolution neural network object detection model: Single 
Shot Detector (SSD) and Faster RCNN. However, both these models are few years old and since 
computer vision is a rapidly advancing field we will be using new advance computer vision models. 
 
In April 2020, A popular object detection algorithm You Only Look Once V4 (YoloV4) was 
published which showed higher accuracy and faster detection time compared to SSD and F-RCNN 
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algorithms. Hence, we will be training a YOLO V4 model to improve the object detection model 
of the previous students. 
 
Data  
 
In terms of data collection, TTC provided one pair of infrared videos along Line 3, both 
northbound and southbound, recorded in December 2017. Each video has about 16,000 frames, 
and 45 anomalies in total were identified by manual observation. To construct a dataset, all frames 
were exported and those frames with anomaly presented are picked out for labeling. The labelling 
process was done by using Microsoft VoTT (from 2018 student report) 
 
In addition to the video from December 2017, we have another set of videos from May 2018 with 
approximately 8000 frames, however, videos from 2018 may summer do not have any anomalies 
detection. Additionally, the previous students extracted all the frames and applied a colour palette 
to turn gray scale images into RGB images.  
 
Current progress 
 
We currently have 780 frames from winter data set with anomalies detected. The annotation for 
the images was converted into YoloV4 Annotations and the dataset was run through the YoloV4 
model to remove any bugs from the model/code. 
 
In the first analysis the model ran for 6000 iterations; however, the model was overfitting after 
3000.  
 
Our results are as follows using the 3000 iteration’s weight: 
 
Detection Counts = 128,  
Unique Truth Counts = 99   
Class ID = 0, (name = Anomaly) 
Average Precision (ap) = 93.74%      
True Positive (TP) = 88,  
False Positive (FP) = 6 
False Negative (FN) = 11 
  
for Confidence Threshold = 0.25,  

Precision = 0.94,  
Recall = 0.89,  
F1-score = 0.91  
Average IoU = 68.74 %  

 
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall mean average precision 
(mAP@0.50) = 0.937417, or 93.74 %  
 
Total detection time: 2 seconds 
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Results using 6000 iteration’s weight: 
 
Detection Counts = 116,  
Unique Truth Counts = 99   
Class ID = 0 (name = Anomaly),  
Average Precision (ap) = 83.88%      
True Positive (TP) = 88,  
False Positive (FP) = 10, 
False Negative (FN) = 11 
 
for Confidence Threshold = 0.25,  

Precision = 0.90,  
Recall = 0.89,  
F1-score = 0.89  

  Average IoU = 66.44 %  
 
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall mean average precision 
(mAP@0.50) = 0.838818, or 83.88 %  
 
Total detection time: 1 second 
 
Next steps 
 

• For the next step, we will be labelling May 2018 videos for anomalies to the best of our 
ability. 

• We will use photo software to paint some additional anomalies into true negative frames 
to train the model on different types of tracks. 

• We will perform cross validation to find the best model. 

• We will run the model on summer videos to see if the model is able to predict anomalies 
correctly. 
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CEA: Sequence pattern mining 
Chengjiang (Gavin) Zou 
 

Introduction 
 
Canadian Electricity Association (CEA) is the national voice for safe, secure and sustainable 
electricity for all Canadians. With today’s increasingly advanced technology, large volumes of data 
are created automatically by the ubiquitous equipment sensors in order to find more insights of 
equipment operation. Currently, CEA operates an Equipment Reliability Information System 
(ERIS) to keep a record of continuous state and outage component data of hydroelectric and fossil 
generating units with timestamps.  
 
This project uses machine learning algorithms and codes to detect patterns and rules of the 
equipment operation by inspecting the continuous records from CEA datasets. These patterns 
may indicate equipment health and help to make an appropriate maintenance decision for next 
time.  For CEA datasets, sequential pattern mining algorithms are conducted to unlock the hidden 
patterns of the continuous records. As a result, a set of preventive maintenance policies are 
derived based on the output of sequential pattern mining. 
 
Data exploration  
 
The Equipment Reliability Information System (ERIS) records the continuous equipment data 
that shows the operating state and outage status of each unit with timestamps. For this project, 
the purpose is to make preventive maintenance policies to save costs of forced outage. Thus, the 
columns kept are UnitEventID (unique event ID generated by the system), GDID(unique unit ID 
created by the system), ForcedOutageType(forced outage type as per the manual), 
OCIDGE(Component outage code), StartDateTime, FinishDateTime, Duration. 
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Figure 1. Sample datasets 
 

Basic concepts and algorithms 
 
Frequent pattern mining 
 
Frequent pattern is a pattern such as itemset or subsequence which frequently occur in a data set. 
For instance, ‘beer’ and ‘nuts’ is a frequent itemset if ‘beer’ and ‘nuts’ often appear together in 
transaction data sets. In terms of itemset, time is not crucial to conduct the frequent pattern 
mining. However, time is an essential key for subsequence. For frequent pattern mining, it is a 
process to unlock the hidden frequent patterns or associations rules by using provided datasets.  
 

Transaction ID Itemset  

10 a,b,d 

20 a,c,d 

30 a,d,e 

40 b,e,f 

Table 1. Sample dataset of frequent pattern 
 
There are several key terms for frequent pattern mining: 
 

● Itemset: an itemset is a set of one or more items. Items can be a,b,d, etc. 
● Support: probability that a transaction contains a and b. Support (a⇒b) =P(a∪b) 
● Confidence: conditional probability that a transaction includes both a and b. 

confidence(a⇒b)= P(b|a) = support(a∪b)/support(a)= support count(a∪b)/support 
count(a).  

● Lift: the probability that a transaction having itemset a given it contains itemset b Lift (a 
and b) = Support of a and b / (Support of a * Support of b) 
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● Sequential rule: relationship between two itemset, and it indicates that if a occurs in 
sequences, b will occur afterward in the same sequence. 

 
Sequential pattern mining 
 
Unlike transaction itemset, sequence data contain a set of event sequences, such as CEA 
inspection datasets. Sequential pattern mining concentrates on mining sequences. In other 
words, given a set of sequences and support threshold, it should find the complete set of frequent 
subsequence.  
 

SID sequence 

10 <a(abc)(ac)d(cf)> 

20 <(ad)c(bc)(ae)> 

30 <(ef)(ab)(df)cb> 

40 <eg(af)cbc> 

Table 2. Sequence database 
 
An element may contain a set of items. Items within an element are unordered which can be listed 
alphabetically. For example, <a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>. Given the support 
threshold min_sup =2, <(ab)c> is a sequential pattern.  
 
Algorithms for sequential pattern mining 
 
There are six main types of algorithms for sequential pattern mining: 
 

● Horizontal format-based mining: Initial Apriori algorithm and Apriori-based method -- 
GSP. 

● Pattern-growth methods: FreeSpan and PrefixSpan. 
● Vertical format-based mining: SPADE, SPAM, CM-SPADE, CM-SPAM. 
● Constraint-based sequential pattern mining: SPIRIT and BIDE. 
● Mining closed sequential patterns: CloSpan 
● Hybrid: LASH 

 
After comparing all algorithms and combining with the case project, the sequential pattern 
mining algorithms for CEA datasets are: PrefixSpan, CM-SPADE and LASH. 
 
Sequential pattern mining with CEA dataset 
 
Data pre-processing  
 
There are numerous inspecting data produced through the operation and maintenance of 
generating units which records the operation and outage data. In this project, UnitEventID, 
GDID, ForcedOutageType, OCIDGE, StartDateTime, FinishDateTime and Duration are kept as 
model features. The project target is to use sequential pattern mining to get the preventive 
maintenance policies. Thus, only the generating units without an outage type should be removed. 
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In other words, the state code: Forced Outage (21), Maintenance Outage (24), Planned Outage 
(25) will remain. 
 
Meanwhile, according to Generation Manual (Bluebook), some OCIDGE codes mean that the 
generating unit will appear in the outage due to external factors. These external factors will be 
useless to make a preventive maintenance policy. Thus, these external factors should be removed 
too. 
 
Most importantly, the raw CEA data are not a sequence dataset that only records a single item in 
each event. Thus, the key step in data pre-processing is to conduct the time aggregation of multiple 
items within a specific time period. After these data pre-processing, the inspection data will 
require the SPMF library format. 
 
Algorithm implementation 
 
Algorithms for sequential pattern mining and association rule mining are implemented on Spark. 
And PYPI provides a python-version of SPMF library that contains 174 sequential pattern mining 
algorithms. For the case study, PrefixSpan, CM-SPADE and LASH are used to conduct data 
mining. There are several parameters for these algorithms: Minimum antecedent support (%), 
Minimum rule confidence (%), Minimum Support, Maximum Support, Minimum Confidence, 
Maximum Confidence. After setting these parameters for different algorithms, the model’s output 
is frequent pattern or association rules. 
 
Conclusion 
 
In the case study, there are some interesting insights besides these CEA datasets by using 
sequential pattern mining. The results show that there are some hidden rules related to the outage 
of unique components. In other words, after outage of component A, the probability of outage of 
component B is much higher than other components. In addition, the frequent pattern mining 
can help to find more dependencies between the outage component code and unit state code. 
According to the frequent pattern, it is able to predict the next outage code or state code of a 
unique component. However, sequential pattern mining algorithms heavily rely on the principal 
parameters - support. For CEA sequential dataset, it is too general to solve the problem only based 
on support. Thus, in future work, how to use more constraints to conduct sequential pattern 
mining will be the key to improve accuracy of preventive maintenance policies.  
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DND: Steps toward a condition-based 
maintenance model for the DND city-class frigate 
fleet PDEs 
Janet Lam 

Introduction 
 
In previous meetings, we presented our work in modelling the DND city-class frigate fleet with an 
age-based model. Throughout the balance of the year, we continued to work through the 
challenges in building a robust age-based model, and are now ready to incorporate the oil and 
coolant inspection readings. This report summarizes that work leading up to this point. 
 
More data preparation and cleansing 
 
Following the feedback from industry experts, another review of the dataset was performed. The 
approaches taken are described in this section. 
 
Dates and times 
 
As is so often the case when working with different programs, we encountered some issues with 
dates being formatted inconsistently throughout the dataset. A common problem is when a 
program stores its dates as dd-mm-yyyy while many American database programs expect dates to 
be recorded as mm-dd-yyyy. When we are lucky or careful, we can identify this problem because 
some dates are simply invalid (e.g. The 10th day of 17th month is certainly supposed to be the 17th 
day of the 10th month) 
 
Another challenge we had with the maintenance records is that the hours on the propulsion diesel 
engine (PDE) were only recorded once per month. This meant that any event that occurred in the 
middle of the month were assigned to a working age that was taken at the end of that same month. 
While this in and of itself is not a great issue, a bigger problem occurs when there are multiple 
events occurring at the same time, as they are assigned the same time stamp, and thus appears to 
occur simultaneously. 
 
To address this issue, we incorporated the more detailed working age information available in the 
oil and coolant conditioning analysis (OCCAP) program, and linearly interpolated the workings 
ages according to the calendar dates for each record. 
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Recoding PMs and CMs 
 
At the beginning of the project, we were given clear directions on how to interpret the different 
records. In particular, the order type codes were identified as preventive maintenance codes, or 
corrective maintenance codes. We were challenged when a group of entries coded as corrective 
maintenance codes were found to be accompanied by a record description that suggested that it 
was a preventive maintenance entry. 
 
As seen in Figure 1, the order type is coded “N001”, which usually indicates a corrective 
maintenance action, but it is clearly accompanied by a description that indicates a preventive 
maintenance action. After clarification from DND, we decided to treat all similar entries as 
preventive maintenance actions. 
 

 

Figure 1. Sample entry coding challenge 

  

Removing short lives 

 
In our first look at the data, we found that there were several records that showed very short lives 
of the equipment. 
 
We can see in Figure 2 where the red triangles indicate system failures that they are very close 
together. This will strongly skew our results to show that the life of the engine is very likely to fail 
in the early days, and less likely to fail as it ages. 
 

 
Figure 2. Sample history showing very short lives 
 
Consequently, we manually removed histories that appeared to be duplicates of previous failures, 
based on the timing and the information associated with the records. 
 
Oil and coolant only 
 
Next, we filtered out our results to focus only on the records that were mostly likely to be affected 
by, or to affect the oil and coolant conditioning readings. Since we intend to use the OCCAP 
readings as our covariates, it makes sense to only use events that are related to the oil and coolant 
systems. 
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Results 
 
After the data were cleaned up once more, we performed Weibull analysis on the data. The results 
are given in  
Figure 3 below. The key takeaway from these results is that there is no evidence that the shape 
parameter of the Weibull distribution is not 1. That is, the data as it stands suggests that the failure 
rates of the engines are equally high when they’re brand new than when they’re aged. 
 
This is not an ideal result, as our understanding of the physical asset goes against this finding. 
Thus, our focus is now shifting to how to improve the results through different record keeping 
protocols. 

 
 

Figure 3. EXAKT results on Weibull parameter estimation 
 
First, we are interested in whether the covariates will have a stronger predictive value to the 
equipment age. It is possible that a condition-based maintenance model will work with the 
existing data, even if the age is not a statistically significant factor in the model. This can occur 
when the covariates reflect the age of the equipment, so age itself does not need to be in the model. 
 
Second, we are interested in investigating the rationale in the way events are coded. It is possible 
that we will leverage our findings from the CEA data audit project to further inform the records 
in this project. 
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TTC: A continuation of re-inspection optimization 
for the TTC NDT team 
Janet Lam 

Introduction and background 
 
For the past couple of meetings, we have been reporting on the optimality of re-inspection 
schedules for the TTC NDT inspection team. As a reminder, one of the responsibilities of the TTC’s 
Non-destructive testing (NDT) team is to revisit known defects in the subway rail system 
according to a defined timetable. Depending on the severity, or priority of the defect, the schedule 
may be every 21 days, or annually, or something in between. When the defects are revisited, the 
NDT team notes the updated status, and this process is repeated until the defects are resolved. 
 
As this re-inspection process is known to consume a significant portion of the NDT team’s limited 
time, analysis into the defects was performed. This report is an extension of the project last 
reported in June 2020. 

Summary of previous work 

In the previous report, we discussed the model of transitioning from one priority to the next within 
a given re-inspection period. The results can be seen in the Table 1. 
 
The key takeaways from the previous work is that based on the average number of defects carried 
each year, a slight increase in the inspection interval can save a significant number of inspections 
each year. The resulting decrease in reliability is relatively very small. For example, by changing 
the purple re-inspection interval from 17.4 days to 40 days increases the risk of missing a 
transition from 0.5% to 1.1%, and yields a saving of 57% in inspection efforts. 
 
In order to bolster the results, TTC sent us more data that continue to the middle of 2020. 
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Table 1. Summary of results on transition probabilities 
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40 0.989 9 57 
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62.7 

60 0.985 6.1 39 
 

129 

80 0.981 4.6 54 
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Extension of work 
 
With the new dataset, we have the benefit of a model that is already built, but the renewed costs 
of data cleansing. Resultantly, our most recent efforts have been focussed on preparing and 
cleansing the new dataset to work seamlessly with the existing dataset. 
 
While the cleansing process is still underway, here are some procedures that have been 
performed. 
 
Recoding failure modes 
 
The work done on for the original results used failure modes that had been codified into a few 
categories. This was done again on the new data. A summary of the recoded results is given in 
Table 2. 
 
It revealed that perhaps some of the failure modes might benefit from more granular coding, 
especially the Weld mode and the Misc mode. 
 
Table 2. Recoded failure modes 

Original failure mode Coded failure mode 

Rail: NDT Defect (Bolt Hole / cracked) Bolt Hole Crack 

Rail: NDT Defect (Bond (2/0,4/0,500MCM)/ web crack) Bond Web Crack 

Rail: NDT Defect (Bond (2/0,4/0,500MCM)/intern web crack) Bond Web Crack 

Rail: NDT Defect (Delta/Corrosion) Corrosion 

Rail: NDT Defect (Corrosion Alert) Corrosion 
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Rail: NDT Defect (Corr./ underside of base) Corrosion 

Rail: NDT Defect (Corr./ notches at outer base) Corrosion 

Rail: NDT Defect (corroded-NDT check reqd) Corrosion 

Rail: NDT Defect (Corr./ rail head) Corrosion 

Rail: NDT Defect (Delta/Misc.) Misc 

Rail: NDT Defect (Delta/Bonds) Misc 

Rail: NDT Defect (MISC.) Misc 

Rail: NDT Defect (Squat/ downward cracking) Misc 

Rail: NDT Defect (Delta/Squat) Misc 

Rail: NDT Defect (heavily worn-NDT check reqd) Misc 

Rail: NDT Defect (broken-NDT check reqd) Misc 

Rail: NDT Defect (Engine Burn/ transverse cracking) Misc 

Rail: NDT Defect (Base/ cracked) Misc 

Rail: NDT Defect (Squat/ subsurface cracking) Misc 

Rail: NDT Defect (Squat/ transverse cracking) Misc 

Rail: NDT Defect (Rail Head/ damaged) Misc 

Rail: NDT Defect (Rail Web/ Horizontal Split Web) Misc 

Rail: NDT Defect (corrugation-NDT check reqd) Misc 

Rail: NDT Defect (Cracked Frog/ transverse crack) Misc 

Rail: NDT Defect (Rail Web/ Vertical Split Web) Misc 

Rail: NDT Defect (Rail Head/ RCF-head checks) Misc 

Rail: NDT Defect (Cracked Joint Bar) Misc 

Rail: NDT Defect (Engine Burn/ subsurface cracking) Misc 

Rail: NDT Defect (Rail Head/ RCF) Misc 

Rail: NDT Defect (Delta/THW) Weld 

Rail: NDT Defect (Delta/AWR) Weld 

Rail: NDT Defect (Delta/New Th.W. Collar Crack) Weld 

Rail: NDT Defect (Thermite Weld- internal crack) Weld 

Rail: NDT Defect (New T. W.) Weld 

Rail: NDT Defect (New T.W./Collar Crack) Weld 

Rail: NDT Defect (Thermite Weld- damaged head) Weld 

Rail: NDT Defect (New T. W./ porosity ) Weld 

Rail: NDT Defect (A. W. Repair/ downward cracking ) Weld 

Rail: NDT Defect (Thermite Weld- transverse defect) Weld 

Rail: NDT Defect (Thermite Weld- incomplete fusion) Weld 

Rail: NDT Defect (New T. W./ incomplete fusion) Weld 

Rail: NDT Defect (A.W. repair/ delaminating) Weld 
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Rail: NDT Defect (Arc Weld Repair/ transverse cracking) Weld 

Rail: NDT Defect (New T. W./ slag inclusion) Weld 

Rail: NDT Defect (Thermite Weld- Porosity) Weld 

Rail: NDT Defect (Butt Weld/ cracked) Weld 

 
New defect ID numbers on old defects 
 
TTC’s record keeping system is such that when a defect transitions from a low priority defect to 
a high priority defect, a new ID number is generated. This means that the same physical defect 
may have two different identifying numbers in the database. 
 
For continuity, we have manually re-labelled these “new” defects with their corresponding 
original ID number. When we received the new data, it was necessary to find the continuing 
records of these relabelled defects and match them with their previous records. Table 3 lists the 
defect numbers that had to be matched with their previous records. 
 
Table 3. ID matching table 

New defect 

ID 

Matching 

ancestral ID 

162425 157282 

171170 157381 

172056 165908 

166858 166801 

171233 170720 

 

In the two years that have transpired since the previous dataset, there have been more 
defects that transitioned from low priority to high priority. It has not been possible to 
identify the ancestral IDs for these three defects. We are awaiting the new information for 
these defects. 
 

171675 Delta has been upgraded to purple defect 2019.7 and changed to not found for tracibility 

179110  Delta has been changed to not found for traceability. Has been updated to purple defect 
2020.68. 

191574  Delta has been changed to not found for traceability. Has been updated to purple defect 
2020.147. 

 
Missing data 
 
The data for 2018 appear to only have records for new defects opened in 2018, and no records of 
defects that existed prior to 2018, and were updated throughout the year. We are awaiting the 
missing records. 

Data Anomalies 

 
There are several anomalies in the data that need to be addressed in advance of computing the 
results. 
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Repeating entries – In the dataset of 15000 entries, there are about 100 records of consecutive 
entries that are taken on the same date. It needs to be decided whether these should count as two 
separate visits to the defect, or treated as a single visit. 
 
Entries that flip flop priorities – There are about 60 entries of defects that change priorities back 
and forth several times throughout its history. As our analysis is centered on the number of days 
it takes for a defect to transition from a lower priority to a higher priority, it is essential that we 
address this issue in a way that is most consistent with reality. 
 
Summary of results 
 
Though our project extension is still in the data cleansing stage, a summary of the data is as 
follows. 
 

Average defect duration 460 days 
Average number days to transition 

Blue to purple 429 
Purple to yellow 148 
Gray to Blue 374 

Average number of visits to a 
defect 

5.2 

 

Next steps 
 
The next steps of this project are crystal clear. We must simply proceed through the cleansing 
process, fill in the missing data and model the results as before. 
 
Then, recommendations will be made in collaboration with the Subway Infrastructure team at 
TTC. 
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Appendix 1: Machine learning for process 
monitoring and control in additive manufacturing 
Katie Xu 

Introduction 
 

Additive manufacturing, also known as 3D printing, is a fabrication process where 3D objects are 
built up layer-by-layer. There are a number of different additive manufacturing processes, 
characterized by the method of layer formation and the materials used. In fused deposition 
modelling (FDM), layers are formed by melting a thermoplastic material and depositing it in the 
desired locations where it solidifies and becomes part of the object. In laser powder bed fusion 
processes such as selective laser sintering (SLS) or selective laser melting (SLM), a layer of metal 
or thermoplastic powder is deposited and a laser is used selectively heat parts of the powder to 
fused them together. The final goal of this project is to develop a closed loop system to monitor 
and control the quality of parts made using a metal SLM machine, and an important intermediate 
milestone will be to implement the system for a FDM printer. This project is in collaboration with 
Professor Zou from the Material Science and Engineering department. 
 
SLM and other additive manufacturing processes have important advantages for applications in 
industrial manufacturing. In particular, the ability to make objects with complex geometries 
which may be difficult or impossible to make with other processes, reduced waste material 
compared to traditional machining, and lower tooling costs compared to casting and moulding. 
These properties are advantageous for creating complex or custom parts that are needed in 
relatively small quantities. Unfortunately, there remain challenges which limit the current 
practicality of additive manufacturing, particularly metal SLM, in industry. Parameter search is 
time consuming because there is a large number of parameters to be found and it is generally done 
through trial and error. Moreover, optimal parameter values depend on factors such as the 
material being used and the part geometry, so in the worst case the parameter search process 
must be repeated for each unique part. Additionally, even with a good set of parameters, external 
disturbances can result in inconsistent part quality and high rejection rates [1].  
 
Thus, there is a need for automated process monitoring and parameter adjustment to improve the 
quality and consistency of parts made using SLM. This problem can be broken down into two 
parts: process monitoring and process control. Process monitoring refers to the use of process 
signatures such as images or temperature measurements to predict quality metrics of the final 
part. Process control refers to the use the predicted quality indictors to take corrective action by 
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adjusting process parameters. Machine learning is a strong contender for these tasks, which are 
difficult to model analytically 
 
Related work 
 
This section will outline some related work in the literature on process monitoring for metal SLM 
printers. There exists a wide variety of work using different combinations of sensor 
configurations, target quality predictor, and mapping techniques. Thus far for this project, I have 
focused on reviewing works which use machine learning-based mapping techniques, with image 
data as the input. Broadly, these include classifiers with fixed feature extraction, convolutional 
neural networks (CNNs), deep belief networks, and direct image analysis. 
 
Traditional machine learning classifiers in combination with a feature extraction scheme have 
been used to classify defects. Aminzadeh and Kurfess [2] used Bayesian inference on features 
extracted from top-down images of build layers to classify build quality. Zhang et al. [3] used a 
support vector machine (SVM) to classify build quality, after extracting features from images of 
several regions of interest taken continuously during the build process. In the same paper, these 
authors also used a convolutional neural network (CNN) for the same task. They found that the 
CNN was more effective and had the added advantage of not requiring explicit feature extraction. 
Other authors have also used CNNs to predict properties of the process and final product. Kwon 
et al. [4] used a CNN with a regression model to predict laser power based on images of the melt 
pool. Yang et al. [5] and Zhang et al. [6] also use images of the melt pool as the input. Yang et al. 
were interested in detecting irregularities in melt pool size, and Zhang et al. were interested in 
predicting the porosity of the final product. Both approached these as classification problems.  
 
Ye et al. [7] sought to address some drawbacks of CNNs. They classified the melt state of the metal 
using images of the plume and splatter regions of interest. By using deep belief networks, they 
reduced the need for hyperparameter tuning compared to using CNNs while achieving 
comparable results. Finally, Yao et al. [8] used multifractal analysis on top-down images of entire 
build layers to extract a statistic representing the quality of the layer. This approach directly 
analysed the image and was not data-driven. The authors have applied this method in a sequential 
optimization framework to determine the optimal corrective action after each layer [9], and it is 
the only method listed here which has been applied to some form of process control. 
 
Future work 
 
The literature review thus far has found that process monitoring in SLM has been fairly widely 
studied. However, many authors cite process control as an end goal of process monitoring but few 
appear to have applied their methods to this problem. Moving forward, efforts will focus on 
studying process control methods used in SLM and other additive manufacturing systems, while 
working with collaborators to establish data requirements and availability.  
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Appendix 2: NRC combustion signature analysis 
for freight fires 
Sophie Tian 

Introduction 
 
The Fire Safety Unit within the National Research Council Canada (NRC) is responsible for the 
research on increasing resilience to outdoor and infrastructure fires, developing fire safety 
technology and applying computational technologies in fire safety. Currently, in response to 
freight transportation fire incidents, first responders survey the scene of the accident to identify 
potential hazardous materials present, and follows the Emergency Response Guidebook (ERG), 
which is a 400-page document, to determine the most appropriate mitigation strategy. Since early 
identification of the scope of the emergency is crucial to protect people, property and the 
environment from the effects of the fire, and also since first responders routinely confront 
unknown hazards that might explode or release toxins in response to ordinary fire extinguishers, 
the Fire Safety Unit in NRC is interested in developing an Artificial Intelligence (AI) enabled tool 
to provide decision making support. In particular, this tool will assist first responders when they 
survey the scene of the accident by identifying what materials are burning and determining the 
most the most appropriate protective gear, and the most effective mitigation measure in response 
to freight fires. 
   
The proposed tool to be developed will consist of several components. First, it will consist of a 
chemical sensor to be designed by NRC that gathers real-time information in the case of a freight 
fire. The proposed tool will also contain a combustion signature analysis (CSA) unit, which will 
employ machine learning (ML) algorithms to predict what is burning based on combustion 
signatures collected from the designed chemical sensor. Finally, this tool will also include a 
decision-making module that uses the predictions from the trained model along with information 
from the ERG document for first responders to produce actionable intelligence to the first 
responders, effectively providing guidance in the appropriate mitigation strategies to take in a 
freight fire.  
 
Problem specification: combustion signature analysis unit 
 

This project is in its early stages of development; its focus will be on the design of the ML models 
for combustion signature analysis and on how to resolve the issue of applying these models to 
combustion signatures collected from a new, not-yet-designed chemical sensor specifically for 
usage in freight fires.  
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Combustion gas signatures reveal what type of material is burning and how the combustion 
progresses. NRC has tested a number of materials and analyzed combustion gas signatures using 
existing chemical sensors for many years, and as a result, has accumulated data in various forms.  
Using existing combustion signature data collected in laboratory settings, eligible ML models are 
to be developed to predict the classification of original materials. Since the NRC has collected 
combustion signature data in different forms and from different types of tests, we will analyze the 
performance of ML models trained using each type of input data and determine the most effective 
form of combustion signature data to use.  
 
Then, further analysis will be conducted on the classifiers built to identify the most important 
dimensions of the input data that characterize the classification decisions made by the ML model. 
This dimensionality reduction step is important since chemical sensors used in laboratory settings 
produce high-dimensional data, but are less portable, whereas the new sensor to be developed for 
freight fires will need to be portable and easily carried by first responders as they survey the scene 
of the accident. The identification of such characterizing dimensions will be crucial in informing 
NRC the requirements of the new chemical sensor to be developed, and ideally, we hope that the 
classification decisions can be made with an acceptable level of confidence and accuracy using 
only 3 or 4 dimensions in the chemical sensor data. 
 
Since the new sensor designed will produce different combustion signatures from the existing 
data that the ML models are trained on, we also need to find a mapping between these two types 
of data.  This mapping will enable the ML model to be employed with the data collected from the 
new chemical sensor, and consequently allow classification decisions to be made at the scene of 
the freight fire.  
 
Anticipated outcomes 
 

The proposed tool addresses the safety of freight transportation by providing a solution that can 
be deployed easily to freight fires and by allowing data-driven decisions to be made given real-
time information. It reduces the risks to first responders by identifying possible hazardous 
materials present based on combustion signatures collected at the scene and by providing 
decision-making support to first responders in determining the most effective mitigation 
measures.  
 
Conclusions and future work 
 

This report introduces the combustion signature analysis project in collaboration with the Fire 
Safety Unit of NRC, including the background and objectives of the project, and a detailed 
description of the problem specification. Future work includes developing ML models to classify 
the combustion signature data, exploring the effectiveness of the different forms of input data, 
and exploring domain adaptation techniques to allow the selected ML model to be used with data 
from the new chemical sensor. 
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Appendix 3: Generic real options valuation 
Ruiqi Yang 

Model Definition 
 

This project is an extension of the UKMOD, and in the original UKMOD project, we need to 
determine an optimized fighter jet procurement policy for the client, the United Kingdom 
Ministry of Defence. We assume that the price of the fighter jet follows Merton’s Jump Diffusion 
process [14]. Furthermore, there exists only the negative price jump (price increment after jump 
happens will be negative) due to the technology innovation. We could construct such a Jump 
Diffusion process by carefully choosing the model parameters. Moreover, when we take a close 
look at the Real Option, we found two properties for such assets, namely high market impact and 
risk-sensitive. The competitors could counter the new fighter jet, and the cumulative future 
rewards should immediately decrease when they do so. This gives extra risk when the buyer 
considers long the option. Because we are aiming to define a model for pricing such an option 
which will give buyer options to purchase the fighter jet in the future, this means we should specify 
the possible future market impact and penalize the long position of the option for the market risk. 
 
To make the Real Options Valuation problem more realistic, we further introduce some of the 
Swing Options’ constraints. The budget constraint determines how much the buyer could spend 
in before the maturity of the Real Option, the budget is assumed to accumulate compounded 
interests; the local constraint determines how many assets the buyer could purchase each time, 
notice that zero is always a choice; the global constraint determines the minimum procurement 
size the buyer has to achieve before maturity to leave without penalty, and also the maximum 
procurement size. 
 
Instead of defining the Real Options valuation model directly, inspired by Halperin and 
Feldshteyn (2018) [1], we choose to construct a replicating portfolio and analyse the value 
increment for the portfolio in discrete time step. There are three main reasons why we do so. First, 
this is similar to a vanilla option’s definition. Second, this is related to the dynamic programming. 
And third, the only assumption we need to further introduce is that the buyer and the seller of the 
option holds same amount of information, and we could use the Merton’s Jump Diffusion for the 
price as the only dynamic for the model. 
 
We assume the state space at time 𝑡 is 𝑠𝑡 = 𝑃𝑡 × 𝐴𝑡 × 𝐵𝑡 × (𝑇 − 𝑡). 𝑃𝑡 ∈ ℝ+ is the price of the 
underlying asset at time 𝑡; 𝐴𝑡 ∈ [0, 𝐴𝑚𝑎𝑥] is the number of assets the buyer purchased before time 

𝑡; 𝐵𝑡 ∈ [0, 𝐵0(1 + 𝑟𝑓)
𝑡
] is the budget remaining before purchase at time 𝑡, where 𝑟𝑓 is the risk free 
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interest rate; 𝑇 − 𝑡 ∈ [0, 𝑇] is the number of decision times left, we could use 𝑡 and they are 
equivalent; we insist to put this in the state space since time is import in the Real Options 
Valuation and this is showed with a simple example in appendix. Notice that if we further assume 
that 𝑎𝑡 ∈ [0, 𝑎𝑚𝑎𝑥] is the current decision, we can immediately get the constraints as follows: 
 

• Budget constraint: (𝐵𝑡 − 𝑎𝑡𝑃𝑡)(1 + 𝑟𝑓) = 𝐵𝑡+1 ≥ 0. 

• Local constraint: 0 ≤ 𝑎𝑡 ≤ 𝑎𝑚𝑎𝑥 and 𝑎𝑡 ∈ ℤ 

• Global constraint: 𝐴𝑡 + 𝑎𝑡 = 𝐴𝑡+1 ≤ 𝐴𝑚𝑎𝑥 

•  
The penalty 𝑝 introduced by the Swing Option will be applied to buyer at the maturity for each 
asset that 𝐴𝑇 is less than 𝐴𝑚𝑖𝑛. It is equivalent to say that −𝑝 ⋅ max(𝐴𝑇 − 𝐴𝑚𝑖𝑛 , 0) is the terminal 
reward. 
 
For the reason that we discussed earlier, we need to access the risk and market impact in the 

model, we will have three parts in one step reward. They are 𝑅(0) for the increment of portfolio, 

as the main part of the reward; 𝑅𝑚𝑘𝑡 for retrieving the market impact; and 𝑅𝑟𝑖𝑠𝑘 for penalizing the 
risk.   
 
Main reward 
 
After discretizing the time, we define 𝑢𝑡 = 𝑎𝑡𝑃𝑡 as the trading value at the beginning of the interval 
𝑡, so that assets value 𝑥𝑡

+ immediately after trades are deterministic: 
 

𝑥𝑡
+ = 𝑥𝑡 + 𝑢𝑡 

 
Since the 𝐴𝑡 assets that is already owned worth 𝑃𝑡 each at time 𝑡, the total portfolio’s dollar value 
is then 
 

Π𝑡 = 𝐴𝑡𝑃𝑡 + 𝑏𝑡 = 𝑥𝑡 + 𝑏𝑡 
 
And the post-trade portfolio value is therefore 
 

Π𝑡
+ = 𝑥𝑡

+ + 𝑏𝑡
+ = 𝑥𝑡

+ + 𝑏𝑡 − 𝑢𝑡 
 
Due to the existence of the budget, the purchase is financed from the bank cash account. This 
imposes the following self-financing constraint: 
 

𝑢𝑡 + 𝑏𝑡
+ − 𝑏𝑡 = 0 

 
In post-trade portfolio Π𝑡

+, assets 𝑥𝑡
+ and cash are accumulating different returns till the end of 

the current period. The cash is invested in the money market account with risk-free rate 𝑟𝑓 and 

the rate of return for assets is 𝑟𝑡 for a non-negative trading 𝑎𝑡. The end-period portfolio value is 
then obtained as follows: 
 

Π𝑡
𝑒𝑛𝑑 = (1 + 𝑟𝑡)(𝑥𝑡 + 𝑢𝑡) + (𝑏𝑡 − 𝑢𝑡)(1 + 𝑟𝑓) 

 
Given the 𝐴𝑡 asset still generate value in the current period, we assume the rate of return for the 
zero 𝑎𝑡 is 𝑟𝑡

0 and in this case 𝑟𝑡 = 𝑟𝑡
0. We can obtain the portfolio’s dollar value increment in period 

𝑡 as: 
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Π𝑡 = (1 + 𝑟𝑡)(𝑥𝑡 + 𝑢𝑡) + (1 + 𝑟𝑓)(𝑏𝑡 − 𝑢𝑡) − (1 + 𝑟𝑡
0)𝑥𝑡 − (1 + 𝑟𝑓)𝑏𝑡 + 𝑟𝑡

0𝑥𝑡 

       = −𝑟𝑓𝑢𝑡 + 𝑟𝑡(𝑥𝑡 + 𝑢𝑡) 

= −𝑟𝑓𝑎𝑡𝑃𝑡 + 𝑟𝑡(𝑎𝑡 + 𝐴𝑡)𝑃𝑡 

 
One thing should be noticed immediately, the 𝑎𝑡 + 𝐴𝑡 assets on hand will worth (𝑎𝑡 + 𝐴𝑡)𝑃𝑡+1 =
𝐴𝑡+1𝑃𝑡+1 at the beginning of the next period 𝑡 + 1, and this relationship reflects the market 
dynamics. 
 
Market impact and risk penalty 
 
At each period, we will face a random negative market impact, and we assume the dollar value of 
the impact is linear to the dollar value of the total assets that the buyer holds at time 𝑡 as follows: 
 

−(𝑐1(𝑎𝑡 + 𝑃𝑡) + 𝑐2𝑡 + 𝜖)(𝐴𝑡 + 𝑎𝑡)𝑃𝑡 
 
where 𝔼(𝜖) = 0 and 𝑉𝑎𝑟(𝜖) = 𝜎𝑀

2 , and 𝜖 is high enough such that we should penalize the long 

position of the option for taking such risk, this will yield the 𝑅𝑡
𝑚𝑘𝑡 and 𝑅𝑡

𝑟𝑖𝑠𝑘 as follows: 
 

𝑅𝑚𝑟𝑘 = −(𝑐1(𝑎𝑡 + 𝐴𝑡) + 𝑐2𝑡)(𝐴𝑡 + 𝑎𝑡)𝑃𝑡 
𝑅𝑟𝑖𝑠𝑘 = −𝜆𝜎𝑀

2 (𝑎𝑡 + 𝐴𝑡)2𝑃𝑡
2 

 
which are the expected values and portion (𝜆 is the risk-aversion) of the variance of the equation 
at the beginning of this subsection. 
 
Comments 
 
We can see that the reward at current period 𝑡 is a quadratic function with respect to the current 
decision 𝑎𝑡, and this is designed to be so. There are two reasons why we do this. The first one is 
that the market impact and market risk are important. The second reason is that, obviously, if it’s 
a linear function with respect to the current decision 𝑎𝑡, then the whole option value will also be 
a linear function with respect to every decision; this will yield the optimal decision tends to be 
“buy all at the beginning” with a high probability for all trajectories, since by the nature of the 
dynamic, the price tends to drop in the future. 
 
Moreover, when we try to solve our model, we first need to decide what is the rate of return 𝑟𝑡. In 
the following section, when we solve the model by Deep Reinforcement Learning, the rate of 
return could be anything that makes sense. For example, a linear function, a piecewise linear 
function, a Mean Reverting process, or even another Merton’s Jump Diffusion process. For 
simplicity, we will use a piecewise linear function in our experiments in the following section. 
 
Integer programming model 
 
When we combine all three parts of reward together, along with the terminal reward introduced 
by the Swing Option assumption, we will have an Integer Programming problem when the market 
dynamic is known, as follows: 
 

max
𝑎𝑡 ∀𝑡

            ∑(1 + 𝑟𝑓)
−𝑡

(𝑅𝑡
(0)(𝑎𝑡) + 𝑅𝑡

𝑚𝑘𝑡(𝑎𝑡) + 𝑅𝑡
𝑟𝑖𝑠𝑘(𝑎𝑡)) + (1 + 𝑟𝑓)

−𝑇
max (

𝑇−1

𝑡=0

𝐴𝑚𝑖𝑛 − 𝐴𝑇 , 0) 
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𝑠. 𝑡.              (𝑏𝑡 − 𝑎𝑡𝑃𝑡)(1 + 𝑟𝑓) = 𝐵𝑡+1 

𝐵𝑡 ≥ 0 

𝐴𝑡 ≤ 𝐴𝑚𝑎𝑥 

𝐴𝑡 ≤ 𝐴𝑚𝑎𝑥 

𝑎𝑡 ∈ ℤ 

∀𝑡 

∀𝑡 

∀𝑡 

∀𝑡 

∀𝑡 

 

 

By using Integer Programming, the optimal policy for a single future is knowable. Since the asset’s 
dynamic is the only dynamic in our model, a single future corresponding to an arbitrary future 
price trajectory, which is starting at the same initial price 𝑃0. Readers might suspect how this 
would help since the future is unknown, there are thousands of possible futures and many of them 
have a large difference. However, if we combine the previous discovery with simulation, we could 
simulate abundant price trajectories and estimate the mean and standard deviation for the 
optimal policy, and we could compare them with the one found by the trading agent that we will 
discuss later. The Integer Programming provides a convenience method and could be used to 
determine how good a trading agent is. 
 
Deep reinforcement learning 
 

We could solve our model by Backward Induction. Amin (1993) [2] introduced a methodology 
that is analogous to the CRR model to discretize the MJD process, 𝑃𝑡 in our case, with guaranteed 
week convergence to its continuous-time formulation. However, if we tend to use Backward 
Induction, three problems could be considered. First, 𝑃𝑡 is only one of the dimensions in the state 
under our setting, and we still have the budget 𝐵𝑡 as a continuous value; Backward Induction 
needs a discrete state, it’s not clear how should we discretize the budget. Second, even we 
discretize the budget properly, the weekly convergence property is not guaranteed for the option 
value. Third, just like other MDP problem, curse of dimensionality exists in our problem; for 
example, if we assume the maximum budget is 2000 dollars and discretize it to the unit dollar, 
and assume the global constraint is 25, the state space is around 270 billion for the weekly decision 
problem. 
 
Inspired by Halperin, I. (2017) [3], we solve this problem by combining simulation and deep 
reinforcement learning, and there are several advantages. First, we could compare the agent’s 
policy with the optimal policy we discussed in the previous section. Second, we could put more 
useful information in our state without warning too much about the curse of dimensionality; for 
example, when we use a vanilla Neural Network as function approximation, we could use the 
exponential weighted average of the historical price as a part of the state to describe the path of 
the price trajectory. Third, we could take the advantage of different Neural Network architectures, 
LSTM or GRU for example. 
 
Methodology 
 
The algorithm we focus on is Rainbow [11], which is the combination of several different 
algorithms and can be seen as an upgraded version of Deep Q-Network. The components of 
Rainbow are: 
 

1. Deep Q-Network (DQN) [4] 
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2. Double DQN (DDQN) [5] 

3. Prioritized Experience Replay (PER) [6] 

4. Dueling Network Architecture [7] 

5. Multi-step bootstrapping [8] 

6. Distributional Q Learning [9] 

7. Noisy DQN [10] 

I tried each component of the Rainbow, and each individual algorithm added to the DQN will 
cause a longer training time. I also tried the LSTM layer instead of a vanilla Neural Network, this 
is motivated by D. L. Clare Chen et al. (2016) [12]. All these algorithms are training in a testbed 
case where we could make 60 decisions in the next 10 year, the maximum total assets we could 
purchase in this option are 25 (global constraint), the maximum number of assets we could 
purchase each time is 7 (local constraint), and we have an initial budget of 1800 (budget 
constraint). The best agent I could find is the one training with Double Deep Recurrent Q Network 
(DDRQN) with Prioritized Experience Replay (PER). 
 
Next, we will discuss the big picture of the experiment. We sperate the whole experiment into two 
steps, training and testing. Notice that no matter what will happen in the future, we have the same 
initial state 𝑠0, and this is important in the training step. 
 
In training, each episode is corresponding to a new price trajectory, and we will perform the 
training with different experiences since Q learning is an off-policy algorithm. For example, if we 
are using the DDQN with PER and LSTM layers, in each time step, we will record the current 
state, the action predicted by the agent (Neural Network), the reward, and the next state, along 
with the Temporal difference error. We will then take a random minibatch of experiences and 
apply the gradient descent accordingly. After the completeness of each episode, we will feed the 

initial state 𝑠0 into the Neural Network and take its maximum value, that is �̂�0 = max
𝑎0

𝑄(𝑠0,⋅), and 

we treat �̂�0 as the approximation of true option value and train until this value converge. The 
learning curve of the DDQN with PER is as follows: 

 



69 

 

In the testing step, we will take 1000 different price trajectories, and compare the agent we trained 
with the optimal policy we found using Integer Programming. The way we use our trained agent 
is pretty simple, and it is the same as the training step except we need to set the additional penalty 
(which is the penalty in the following subsection) as zero. For each price trajectory 𝑖, at each time 
step 𝑡, we feed the current state 𝑠𝑡 into the Neural Network, the NN will give the output as 

𝑄𝑡
(𝑖)

(𝑠𝑡
(𝑖)

,⋅); we will use the action which yield the maximum Q-value as the optimal action in 

current period, that is 𝑎𝑡
(𝑖)

= arg max
𝑎𝑡

(𝑖)
𝑄𝑡

(𝑖)
(𝑠𝑡

(𝑖)
,⋅), and feed into our environment. The reason why 

we could use the argmax of Q value directly is that the corresponding position of the 𝑄(𝑠,⋅)’s 
output is the same as the action. 
 
Constraints disposal 
 
The traditional Q-Learning with function approximation estimates the 𝑄 value for state-action 
pair, 𝑄(𝑠, 𝑎), instead of transforming state-action pair into a feature vector, the Deep-Q Network 
will have a separate output corresponding to each action. In our problem, for example, if the 
maximum number of assets could buy in each decision epoch is 7, we will have eight outputs for 
Deep-Q Network, and this is because that buying 0 assets will always be a valid action. A Deep Q-
Network always requires a fixed output dimension. 
 
However, since the existence of the budget constraint and the global constraints, we might have 
infeasible actions at each time of making decisions. To solve this problem, we introduce an 
additional penalty 𝑝−, and it will apply each time whenever the agent chooses an infeasible action, 
and the action will be re-chosen with one less. Finally, the reward for taking the original action 
will be the penalty-adjusted one. Notice that the penalty 𝑝_ becomes a hyperparameter.  
 

Constraints Disposal Algorithm  
In the environment, observe current price 𝑃𝑡, 
budget 𝐵𝑡, and assets on hand 𝐴𝑡 
The agent 𝑄(𝑠𝑡,⋅) predict the optimal feasible 
action 𝑎𝑡

∗ ∈ [0, 𝑎𝑚𝑎𝑥], and the reward for taking 
this action 𝑟𝑡

∗. With the penalty 𝑝−, do following: 
set 𝑎 = 𝑎𝑡

∗ 
while 𝑎 ≥ 0 
    if 𝐴𝑡 + 𝑎 ≥ 𝐴𝑚𝑎𝑥 or 𝐵𝑡 − 𝑃𝑡 ∗ 𝑎 < 0: 
        𝑎 = 𝑎 − 1 
        𝑟𝑡

∗ = 𝑟𝑡
∗ − 𝑝− 

    end if 
end while  
Return the predicted action 𝑎𝑡

∗ along with its 
reward 𝑟𝑡

∗ 

 

 
The reason why applies the penalty recursively is pretty simple, an infeasible action happens only 
when the agent’s predicted an action is above the maximum feasible action. Given that the action 
space is discrete non-negative value, we want to punish the agent (a Neural Network) with the 
size between the action it performs and the maximum feasible action at the current state. 
 
We will set the extra penalty 𝑝− as a large positive number in the training step, and it will be zero 
in the test step. However, due to the nature of this simple algorithm, we have to introduce an 
additional value that should be controlled in the learning, which is the error the agent makes. 
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Numerical results 

 

Due to the high computational cost for an individual algorithm in rainbow applies to our problem, 
I don’t have a well-tuned agent for every algorithm. As I mentioned previously, the best agent I 
have is using DDRQN with PER, reader can find details of this algorithm in appendix with the 
extra conditions for using Dueling network architecture in the appendix. The following table 
presents all agents I have; all results are computed in the testing step. 
 

algorithm portfolio mean portfolio std mean error std error 
optimal (IP) 98.67 52.56 - - 

DDQN 53.03 60.01 - - 
DRQN 73.81 57.71 7.6 17.7 

DRQN with PER 77.4 58.74 3.4 8.2 
D3RQN with PER 76 53.43 9.23 13.75 

 
As we can see from the above, the biggest improvement for the model comes from the LSTM layer. 
And the idea being that the RNN (LSTM in our case) will be able to retain information from states 
further back in time and incorporate that into predicting better Q values and thus performing 
better on games that require long term planning. One technical detail is that we choose to initialize 
the LSTM layers’ hidden states as zero. 
 
Also, there’s a tiny improvement that comes from the Prioritized Experience Replay. The reason 
why I put so much attention on the PER is that given the dynamic of our model is an MJD with a 
high chance that the price would have a negative jump in the future, and when a jump happens, 
this experience might “surprise” the agent. The PER will put more weight on those unexpected 
experiences. I expect the PER has the functionality that captures the possible jumps and predicts 
an accurate Q value when the jump happens. 
 
Since the Neural Network is a universal function approximation, the Dueling Network 
architecture gives a separate layer from predicting the action value, and this will yield a more 
complex NN. I hope this separate action value layer could further reduce the error that the NN 
makes, this is failed according to the table. However, during the testing step of the D3RQN 
algorithm, I did observe the trend of the error that the agent makes is going down, which indicate 
I might need to train this agent longer.  
 
Furthermore, I think the Distributional Q learning would be helpful for our problem. Given a state 
𝑠𝑡, this method predicts a distribution of returns for each action according to the points that the 
user fixed before the training. Given that all three parts of the reward are related to the price, and 
the log-ratio between future price and current price follows a normal distribution, I do think the 
distribution of returns is more proper for our problem. Amin [2] gives a result that, for a MJD, 
the increment between current price and the next period price is fixed, and with different 
probabilities that depending on the current price. It requires further research for using above 
result. 
 
Learning curve experiment 
 
We can notice that the learning curve presented in the previous section is different from a typical 
learning curve, where the Q value would monotonically increase in general. In our learning curve, 
there’s a huge jump around 7500 episodes. The main topic in this section is to present a learning 
curve analysis and try to explain this phenomenon. 
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Before the experiment begins, let’s first remember ourselves that we introduced an error (to make 
an infeasible action) that we want to control and reduce in the training step, and this error implies 
how much penalties 𝑝− are applied. Since the penalty is directly applied to the reward, control the 
error will be an alternative choice to gain a larger reward in the training step. Therefore, we could 
achieve a larger state-action value if we control the error. 
 
Next, we will discuss the experiment itself. We will use the Dueling Double Deep Recurrent Q 
Network (D3RQN) with PER to perform the experiment. Since we added the Dueling Network 
into the original NN, we trained 1000 more episodes. The learning curve of D3RQN with PER is 
as following, and I also present the DDRQN with PER learning curve for comparison purposes. 
 

 
As we can see, both have a jump at around 7500 episodes, but with different jump size. And after 

the jump, the �̂�0 keeps increasing and tends to be stabilized. 
 
The hypothesis is that the LSTM layers are updated before 7500 episodes, during this period, the 
whole network also learns how to reduce the error; after 7500 episodes, the LSTM layers are 
stabilized, and the rest of the network has to re-learn and control the error. Furthermore, the 
sudden drop is not related to overfitting. 
 
LSTM layers analysis in training 

 

The agent we trained with D3RQN contains two LSTM layers; one returns a sequence, and one 
returns a single vector; follows by the Dueling fully connected layers. Motivated by the blog DQN 
and DRQN in partially observation gridworlds [13], we can observe a clear pattern in the LSTM 
hidden state updates when training a DRQN agent, this suggests we should take a look at our 
LSTM hidden states. When training, we store the hidden state return by both of the LSTM layers 
in replay buffer as experience, we measure the mean (with respect to the minibatch) cosine 
similarity between the hidden state before and after the training. And then we replace the hidden 
state stored in the replay buffer for the next comparison (if it exists). 
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The mean (with respect to the time steps in one episode) cosine similarity of the hidden states is 
in the following, I use the red line to indicate where the 7500 episode is. First, we should notice 
that the mean cosine similarity is small, which suggests we should pay attention to the size of it 
but not the value itself. Second, we can observe that the majority of the hidden states update 
happen before 7500 episodes. This is actually the same as the first part of the hypothesis. 
 

 
Error analysis in training 
 
At each time step in each episode, I store the error made by the agent and measure the mean error 
made by the agent in one episode. The mean error made by the agent in the training step is at the 
following, I also use the red line to indicate where the 7500 is. 
 

 
 
As we can observe, there is a clear trend for the mean error between 4000 to 7500 episodes. We 
would expect a lower mean error if the trend was continuing after 7500 episodes, however, there 
is a raise of the mean error at 7500 episodes where the majority of hidden states update finished.  
This is the second part of the hypothesis, after the hidden states update is finished, the rest of the 
neural network has to relearn to control the error it makes. 
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Portfolio value and mean error in testing 
 
When training, after a fixed number of episodes, we store the weight learned by the Neural 
Network. This process is been performed after 1400 episodes since we use the epsilon greedy for 
exploring and it ends approximately at this time. 
 
In the testing step, we use the weighted stored in training step to act as the trading agent, and we 
store the portfolio value and mean error as the agent’s performance. We plot the smoothed mean 
predictions and mean errors. 
 

 
 
From the above plot, we can see that some of the agents before 7500 episodes are doing pretty 
well. However, when we take a closer look at the smoothed mean error, we can see that even some 
of the agent before 7500 episodes has a high predicting value; they also have a high mean error. 
The agent after 7500 episodes can do better in predicting the portfolio value with a lower error 
make. This actually concludes our hypothesis, and the drop in the learning curve is not overfitting.  
 
Appendix 
 
Time in state: a simple example 
 
In this subsection, I will introduce the reason why we think our problem is time inhomogeneous. 
Let’s consider a simple example where we have 10 decision times in 10 years horizon. Under the 
swing option framework, let’s assume that the maximum number of assets we can buy per 
transaction is 5, the minimum number of global constraints is 15 (this is also the number of assets 
we need to buy before maturity to exist without penalty), and the maximum number of global 
constraints is 20. Assume the market dynamic gives the following price trajectory in the next ten 
years (A Merton’s Jump Diffusion process): 
 

time 0 1 2 3 4 5 6 7 8 9 10 

price 100 105 95 50 55 60 65 75 60 50 55 

 

Furthermore, assume that the penalty for the swing option framework is 60 per asset shortage. 
Assume we had bought 10 before time 3, and we did not buy any during time 4 to time 8. If the 
time (or equivalently, number of decision times left) does not include in the state, then at time 3 
and time 9, we are basically in the same state; that is we own 10 assets, and the price is 50. 
However, when we make decisions, we should make different decisions in these two cases: 
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• At time 3, the jump happens, we still have time for waiting. 

• At time 9, the price is low, but we’re facing the situation where we have to buy some assets; 
otherwise we will lose more. 
 

To conclude, we include time in our state since time is sufficient relevant information when 
making a decision. For the same reason, we also include the number of assets we hold till decision 
time in the state as well as the exponential weighted average price. The price at time 5 and time 9 
are both 50. However, a single value 50 is unable to describe the general price movement. 
 

D3RQN with PER 

 

D3RQN with PER 
Initialize replay memory 𝒟 to capacity 𝑁,minibatch size 𝑘, exponent 𝛼 and 𝛽, small constant 𝜖 
Initialize action-value function 𝑄(⋅ |𝜽𝑴) with random weights. Pre-train 𝑄(⋅ |𝜽𝑴) and make a 
copy  𝑄(⋅ |𝜽𝑻) -------------------------------------------------------------------------------------- - [4] 
 for episode = 1,  𝑀 do 
 Initialize sequence 𝑠0 and preprocessed sequenced 𝜙0 = 𝜙(𝑠0) ---------------------- [1] 
 for 𝑡 = 0,  𝑇 do 
  With probability 𝜖 select a random action 𝑎𝑡, otherwise select 𝑎𝑡 =
                              max

𝑎
𝑄∗(𝜙(𝑠𝑡),  𝑎𝑡; 𝜽𝑴) ------------------------------------------------------------- [2] 

  Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡 and next state 𝑠𝑡+1. Set 
                              𝑠𝑡 = 𝑠𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1). Store transition                  
                              (𝜙𝑡,  𝑎𝑡 ,  𝑟𝑡,  𝜙𝑡+1) in 𝒟 
  Set ∆ = 0 
  for j = 1 to k do 
   sample transition 𝑗 ∼ 𝑃(𝑗) = 𝑝𝑗

𝛼/∑ 𝑝𝑖
𝛼

𝑖  

   Compute IS weight 𝑤𝑗 = (𝑁 ⋅ 𝑃(𝑗))
−𝛽

/max
𝑖

𝑤𝑖 

   Compute TD-error 𝛿𝑗 ← 𝑟𝑡𝑗

𝑗
+ [𝑄 (𝜙𝑡𝑗+1

𝑗
, 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄 (𝜙𝑡𝑗+1

𝑗
|𝜽𝑴) |𝜽𝑻) −

                                            𝑄(𝜙𝑗, 𝑎𝑗|𝜽𝑴)] 

   Update transition priority 𝑝𝑗 = |𝛿𝑗| 

   Accumulate weight-change ∆+= 𝑤𝑗 ⋅ 𝛿𝑗 ⋅ 𝛻𝜽𝑴
𝑄 (𝜙𝑡𝑗

𝑗
, 𝑎𝑡𝑗

𝑗
) ------------- [3] 

  end for 
  update weights 𝜽𝑴 
 end for 
 Decay 𝜖 = 𝜏𝜖 
 After ρ iterations update θM = θT 
end for 

 
The whole algorithm is based on Double Deep Q-Network, in which we use the target network for 
prediction next state’s Q value, use the main network to select an action, and perform the gradient 
descent step. A few things should be noticed here: 
 

[1] The 𝜙 step corresponds to the feature engineering. As our state is a mixture of continuous 

and discrete values that differ in scale, we may want to perform normalization, 

standardization, or one hot encoding before we pass the state into the neural network. 
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[2] The 𝜖 exists since we are using the 𝜖-greedy for exploration. There is an alternative method 
in Rainbow for exploration called NoisyNet, in which we use a noisy fully connective layer 
as the final layer in the neural network. 

[3] Depending on the loss function, we may have different 𝛻𝜽𝑴
𝑄 (𝜙𝑡𝑗

𝑗
, 𝑎𝑡𝑗

𝑗
). For example, if we 

are using mean squared error, then 𝛻𝜽𝑴
𝑄 (𝜙𝑡𝑗

𝑗
, 𝑎𝑡𝑗

𝑗
) = 𝛻𝜽𝑴

(𝑦𝑗 − 𝑄 (𝜙𝑡𝑗

𝑗
, 𝑎𝑡𝑗

𝑗
))

2

, where 𝑦𝑗 =

𝑟𝑡𝑗
+ 𝛾 ⋅ max

𝑎′
𝑄 (𝜙𝑡𝑗+1

𝑗
, 𝑎′; 𝜃𝑇) ⋅ 1𝑡𝑗+1≠𝑇. 

[4] Since we are using the Dueling Network, we need to define value 𝑉(𝑠; 𝜃, 𝛼) and advantage 
𝐴(𝑎; 𝜃, 𝛽) layers after the LSTM layers. We could then define the output of the neural 

network to be either 𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛼) + [𝐴(𝑎; 𝜃, 𝛽) − max
�̃�

𝐴(�̃�; 𝜃, 𝛽)] or 

𝑄(𝑠, 𝑎; 𝜃, 𝛼, 𝛽) = 𝑉(𝑠; 𝜃, 𝛼) + [𝐴(𝑎; 𝜃, 𝛽) −
1

|𝒜|
∑ 𝐴(𝑎′; 𝜃, 𝛽)𝑎′ ]. 

 

References 
 

[1] Halperin, I., & Feldshteyn, I. (2018). Market Self-Learning of Signals, Impact and Optimal 
Trading: Invisible Hand Inference with Free Energy. ArXiv, abs/1805.06126. 

[2] Amin, K. I. (1993). Jump Diffusion Option Valuation in Discrete Time. The Journal of 
Finance, 48(5), 1833–1863. doi: 10.1111/j.1540-6261.1993.tb05130.x 

[3] Halperin, I., 2017. QLBS: Q-learner in the black-scholes(-merton) worlds. URL: 
https://arxiv.org/abs/ 1712.04609. arxiv: 1712.04609. 

[4] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness, Joel, 
Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K., Ostrovski, 
Georg, Petersen, Stig, Beattie, Charles, Sadik, Amir, Antonoglou, Ioannis, King, Helen, 
Kumaran, Dharshan, Wierstra, Daan, Legg, Shane and Hassabis, Demis. "Human-level 
control through deep reinforcement learning." Nature 518 , no. 7540 (2015): 529--533. 

[5] van Hasselt, H., Guez, A. & Silver, D. (2015). Deep Reinforcement Learning with Double Q-
learning. CoRR, abs/1509.06461. 

[6] Schaul, T., Quan, J., Antonoglou, I. & Silver, D. (2015). Prioritized Experience Replay (cite 
arxiv:1511.05952Comment: Published at ICLR 2016) 

[7] Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M. & de Freitas, N. (2016). 
Dueling Network Architectures for Deep Reinforcement Learning.. In M.-F. Balcan & K. Q. 
Weinberger (eds.), ICML (p./pp. 1995-2003), : JMLR.org. 

[8] Sutton, R. S. (1987). Learning to Predict by the Methods of Temporal Differences (TR87-
509. 1). GTE Labs . 

[9] Bellemare, M. G., Dabney, W. & Munos, R. (2017). A Distributional Perspective on 
Reinforcement Learning.. CoRR, abs/1707.06887. 

[10] Venancio, T. M., Balaji, S., Geetha, S. & Aravind, L. (2010). Robustness and evolvability in 
natural chemical resistance: identification of novel systems properties, biochemical 
mechanisms and regulatory interactions. Mol. BioSyst. doi: 10.1039/c002567b 

[11]  M. Hessel et al., "Rainbow: Combining Improvements in Deep Reinforcement Learning." 
arXiv preprint arXiv:1710.02298, 2017. 

[12] D. L. Clare Chen, Vincent Ying, Deep Q-Learning with Recurrent Neural Networks, 
http://cs229.stanford.edu/proj2016/report/ChenYingLaird-
DeepQLearningWithRecurrentNeuralNetwords-report.pdf (2016) 

[13] DQN and DRQN in partially observable gridworlds. (2020, March 30). Retrieved November 
30, 2020, from https://kam.al/blog/drqn/ 

[14] Zhang, J., & Zhao, H. (2006). Asset pricing under jump diffusion. Hong Kong: School of 
Economics & Finance, University of Hong Kong. 

  

https://kam.al/blog/drqn/


76 

 

 

Appendix 4: Automatic airport x-ray baggage 
scanner via adversarial domain adaptation 

Jahyun (Lucrece) Shin 
 

Background 
 
The aim of this research is to build an automatic airport security baggage scanner. Currently, 
human operators at airports are inspecting if travellers’ baggage contains any harmful objects. It 
would be both time-effective and cost-effective to implement a “smart” scanner that can 
automatically perform this scanning process to detect any harmful objects.  
 
Data 
 
X-ray images 
 
Incheon International Airport located in Incheon, South Korea provided us with x-ray images of 
scanned baggage containing harmful objects, as shown in Figure 1. The provided x-ray images 
were labelled with seven classes: gun, knife, hard disk, phone, battery, USB, and shuriken. During 
initial stages, we decided to consider only two classes, gun and knife. 

 
 

 

 

 

  

 

 

 

 
Figure 1. Examples of scanned x-ray images provided by Incheon International 
Airport 
 
Removal of duplicates. The x-ray images contained many duplicates, in the form of different 
rotations of the same image. In order to calculate the number of unique images, all such duplicates 
were removed.  
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Removal of whitespace. Most gun and knife x-ray images came with a big white space that 
filled nearly three quarters of the entire image space. Since this is a waste of information for such 
high-dimensional data, they were cropped tightly to only contain the useful content of the image. 
 
Removal of kitchen knife images. The given knife class is a mix of three different categories 
of knife: cutter knife, other knife, and kitchen knife. However, kitchen knife images are very 
clogged with a large overlap with other objects in the bag, as shown in Figure 2 (a) and (b). 
Although the final goal will be to detect the object in such clogged environments as well, for initial 
stages of model development, these images were considered as a source of noise, since the images 
of other categories of knife at least have a clear and isolated shape of knife, as shown in Figure 2 
(c) and (d). Thus, kitchen knife images were removed from the dataset. 

 

 
                 (a)                                (b)                                        (c)                                        (d)  

 

Figure 2. X-ray images of knife class (a), (b); kitchen knife images, (c); (d) other knife 

images 

 

Google images 
 
The biggest issue faced was that there were not a sufficient number of x-ray images to build a 
robust model without overfitting. The suggested solution was to scrape Google images of the same 
objects, as shown in Figure 3, which are openly available in tens of thousands of quantities from 
the Internet. When a model is trained with ample Google images, we can develop a technique to 
adapt the model to perform well for x-ray images as well. 
 
Table 1 summarizes the number of Google images and x-ray images; it shows there are many more 
unique and labeled Google images than x-ray images. 

 

Class No. of Google images 
No. of x-ray images 

(original) 

No. of x-ray images 

(no duplicates or kitchen knife) 

Knife 1111 550 83 

Gun 1045 1050 111 

 
Table 1. Number of Google and x-ray images. 
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Figure 3. Examples of scrapped Google images of gun and knife 
 
Methodology 
 
ResNext-50 backbone 
 
In this problem, we take the image classification approach, where we will classify the whole image 
an object. For the main backbone model for image classification, we use Resnext-50 [3] for its 
relatively few number of parameters than other models such as vgg or AlexNet. It also has lower 
top-1 and top-5 error than the regular ResNet-50 or -101 [5]. 
 
“Benign” class 
 
At first, a ResNext-50 model was trained with Google images of two classes (gun and knife). 
However, when the same model was tested with Google or x-ray images that do not contain gun 
or knife, it classified nearly all of them as knife, with 90 to 100% confidence. This result was 
alarming, since most baggage at the airport should not contain a gun or knife, and having such a 
high false alarm rate would be very inefficient.  
 
Consequently, a third “benign” class was introduced, which represents all objects in the world that 
are not guns or knives. For this class, Google images of any random objects not related to gun and 
knife were scrapped. For x-ray images, given images of classes other than gun and knife (battery, 
USB, hard disk, and phone) were used. 

 
Adversarial discriminative domain adaptation (ADDA) 
 
Since there are not enough x-ray images to build a robust model, we use only the ample Google 
images with rich annotations as training data. We use the small number of x-ray images only for 
testing the model. Consequently, the specific problem is to reduce the difference in the 
distributions of Google images and x-ray images, so that the same model will work well on both 
types. Since x-ray images have inherently much different characteristics than Google images, a 
model trained only on the Google images might provide disappointing outcomes when tested on 
x-ray images [2]. This issue is known as domain shift [2].  
 
To accommodate for domain shift, we introduce Adversarial Discriminative Domain Adaptation 
(ADDA) [1]. An overview of the model is shown in Figure 4. During training stage, the model first 
pre-trains a source encoder and a source classifier on the class labels of labeled source images. 

Next, a target encoder, which has the same structure with the source encoder, is initialized with 

the pre-trained weights of the source encoder from the first step. It then gets trained while the 

source encoder weights are frozen.  
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Figure 4. Overview of adversarial discriminative domain adaptation (ADDA) 
 
The ADDA model assumes that the target domain is unlabeled, so it does not optimize for the 
class labels of the target domain. Instead, it introduces a discriminator model, a series of fully 
connected layers that tries to classify the domain label of each image. It receives both source 
encoder and target encoder's encoded features, and tries to classify which feature belongs to which 
domain. The goal is to confuse the discriminator so that it will not be able to tell if the encoded 
feature is from source domain or target domain. This way, the target encoder can be trained to 
map target images to a similar distribution with the source images.  
 
Lastly, during the testing stage, we test the model with target images, using the target encoder 
and source classifier, to get the class labels for the target images. 

 
Modifications. A few modifications are made to the original ADDA model. Instead of two 
separate encoders for the source and target domains, a single encoder is used. This eliminates the 
pre-training stage of the source encoder, and instead trains a single encoder with both source and 
target images together. Secondly, in the original ADDA, the target encoder was trained with the 
loss of domain classification only, since the source encoder weights were frozen. In the modified 
model, the single encoder is trained with source classification loss (only using the source images), 
and is simultaneously trained with domain classification loss with both source and target images. 
With such modifications, instead of separating the classification and domain adaptation tasks, 
they can be done at the same time.  
 
Multi-label approach 
 
Most x-ray images contain many more objects than the object of interest, as shown in Figures 1 
and 2, while most Google images have a distinctive, isolated presence of the object of interest. 
Thus, this presence of many other objects in x-ray images can be quite confusing to the model that 
was trained only with Google images. To account for this point, instead of making the model to 
classify the image as one of the three classes, a more flexible approach was taken by making the 
model predict three things for an image: whether or not the image is benign, whether or not it is 
a gun, and whether or not it is a knife.  
 
If using a single-label approach, the label of a single image would be a single number (i.e. 0, 1, or 
2) for each class. For a multi-label model, a label for an image is composed of three binary 
numbers (0 and 1), where 1 means the label is present in the image and 0 means it is not. This 
way, a different label can be given for an image that contains more than one classes.  
 
It is also found to be beneficial if a soft label was used for benign class, due to the model’s tendency 
to always predict the benign class with more confidence. Thus, the label for only the benign class 
is changed to 0.5, while the other ones are left as 1.  
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All Google images’ labels are re-formulated to distinguish between images that are with or without 
benign objects. For example, in Figure 5, images that look like (a) were given a label of [0, 0, 1] 
for [isBenign, isGun, isKnife] with only isKnife = 1. Images that look like (b) with a knife and 
benign objects both present were given a label of [0.5, 0, 1] with isBenign = 0.5 (soft label) and 
isKnife = 1. 
 

                                 
               (a) Google image with knife only       (b) Google image with knife and benign objects 
 

Figure 5. Google images of knife class 
 
Experiments 
  
For experiments, we use ResNext-50 architecture provided in Pytorch. When training ADDA, the 
adversarial discriminator consists of 2 fully connected layers with 1024 and 2048 hidden nodes. 
Each layer uses a ReLU activation function. Optimization uses Adam optimizer for 50 epochs with 
a learning rate of 2e-6, and a batch size of 20 images. All training images are rescaled to 224x224 
pixels. We used mean square error (MSE) loss was used for class classification by the encoder (in 
order to compensate for the soft labels of the benign class), and cross-entropy loss was used for 
domain classification by the discriminator. 
 
Results 
 
The result of the experiment is presented in Table 2. It can be observed that using a multi-label 
approach with ADDA achieved the best result with both benign and gun classes. The largest 
increase in recall is for gun class, where it increased by nearly 75% from using a single-label 
approach without domain adaptation. For knife class, using a multi-label approach with ADDA 
only increased the accuracy by 5% than a single-label approach without ADDA, while staying low 
at only 12% recall. 
 
For class-wise qualitative analysis, Figure 6 visualizes with t-SNE [6] the feature representations 
of the multi-label ADDA model with different class labels. In (a) where Google image features are 
plotted, there is some area of overlap between the benign class (green) and knife class (blue), 
while gun class (pink) is separated far away. In (b) for x-ray image features, although the knife 
class (blue) seems to be a little bit separated from the benign class (green), the model seems to be 
classifying the whole area of both the benign and the knife class together as benign class (as 
observed in Table 2). It is thus not able to detect a clear decision boundary between benign and 
knife classes. On the other hand, the gun class (pink) is fairly separated from the two, which 
explains the high recall for gun class. 
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   Method Benign Gun Knife 
Avg. (for gun 

and knife) 

   Source-only, single-label 0.997 0.137 0.072 0.209 

   Source-only, multi-label 0.997 0.436 0.145 0.291 

   ADDA, single-label 1.000 0.479 0.084 0.282 

   ADDA, multi-label 1.000 0.889 0.121 0.505 

 
Table 2. Domain adaptation performance compared to source-only model 
 

              
                         (a) Google image features                            (b) Xray image features 
 
Figure 6. t-SNE of class labels. t-SNE visualizations of ADDA features of Google and 
x-ray images of three different labels 
 
For domain-wise qualitative analysis, Figure 7 visualizes with t-SNE [6] the feature 
representations of the ADDA model with the two different domain labels (Google as target 
domain- green and x-ray as source domain- pink). Near the beginning at epoch 5 of ADDA 
training, the two domains look quite separated. As training proceeds, however, the two become 
closer. At epoch 25, clusters of the two domains appear much closer to each other.    
 
    

     
               (a) Epoch 5                                  (b) Epoch 15                                  (c) Epoch 25 
 
 
 
 
 
 
Figure 7. t-SNE of domain labels. t-SNE visualizations of ADDA features of Google 
and x-ray images at epoch 5, 15, and 25 of ADDA training 
 
Conclusion 
 
The ADDA model with multi-label approach was shown to be a simple yet effective method for 
domain adaptation between Google images and scanned x-ray images, despite large domain 
shifts. The effectiveness of the proposed method was demonstrated through higher recall for both 
gun and knife classes than using a single-label, source-only model without domain adaptation. 
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Since this is still an initial model development stage of the research, more effective and intuitive 
approaches will be considered in the future.   
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Appendix 5: Incremental few-shot learning 
Kuilin Chen, Chi-Guhn Lee 

Introduction 
 
Incremental learning is a learning paradigm that allows the model to continually learn new tasks 
on novel data, without forgetting how to perform previously learned tasks (Cauwenberghs & 
Poggio, 2001; Kuzborskij et al., 2013; Mensink et al., 2013). The capability of incremental learning 
becomes more important in real-world applications, in which the deployed models are exposed to 
possible out-of-sample data. Typically, hundreds of thousands of labelled samples in new tasks 
are required to re-train or fine-tune the model (Rebuffi et al., 2017). Unfortunately, it is 
impractical to gather sufficient samples of new tasks in real applications. In contrast, humans can 
learn new concepts from just one or a few examples, without losing old knowledge. Therefore, it 
is desirable to develop algorithms to support incremental learning from very few samples. 
 
While a natural approach for incremental few-shot learning is to fine-tune part of the base model 
using novel training data (Donahue et al., 2014; Girshick et al., 2014), the model could suffer from 
severe over-fitting on new tasks due to a limited number of training samples. Moreover, simple 
fine-tuning also leads to significant performance drop on previously learned tasks, termed as 
catastrophic forgetting (Goodfellow et al., 2014). Recent attempts to mitigate the catastrophic 
forgetting are generally categorized into two streams: memory relay of old training samples 
(Rebuffi et al., 2017; Shin et al., 2017; Kemker & Kanan, 2018) and regularization on important 
model parameters (Kirkpatrick et al., 2017; Zenke et al., 2017). However, those incremental 
learning approaches are developed and tested on unrealistic scenarios where sufficient training 
samples are available in novel tasks. They may not work well when the training samples in novel 
tasks are few (Tao et al., 2020b). 
 
To the best of our knowledge, the majority of incremental learning methodologies focus on 
classification problems and they cannot be extended to regression problems easily. In class-
incremental learning, the model has to expand output dimensions to learn N0 novel classes while 
keeping the knowledge of existing N classes. Parametric models estimate additional classification 
weights for novel classes, while nonparametric methods compute the class centroids for novel 
classes. In comparison, output dimensions in regression problems do not change in incremental 
learning as neither additional weights nor class centroids are applicable to regression problems. 
 
Besides, we find that catastrophic forgetting in incremental few-shot classification can be 
attributed to three reasons. First, the model is biased towards new classes and forgets old classes 
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because the model is fine-tuned on new data only (Hou et al., 2019; Zhao et al., 2020). Meanwhile, 
the prediction accuracy on novel classes is not good due to over-fitting on few-shot training 
samples. Second, features of novel samples could overlap with those of old classes in the feature 
space, leading to ambiguity among classes in the feature space. Finally, features of old classes and 
classification weights are no longer compatible after the model is fine-tuned with new data. 
 
In this paper, we investigate the problem of incremental few-shot learning, where only a few 
training samples are available in new tasks. A unified model is learned sequentially to jointly 
recognize all classes or regression targets that have been encountered in previous tasks (Rebuffi 
et al., 2017; Wu et al., 2019). To tackle aforementioned problems, we propose a nonparametric 
method to handle incremental few-shot learning based on learning vector quantization (LVQ) 
(Sato & Yamada, 1996) in deep embedded space. As such, the adverse effects of imbalanced 
weights in a parametric classifier can be completely avoided. Our contributions are three fold. 
First, a unified framework is developed, termed as incremental deep learning vector quantization 
(IDLVQ), to handle both incremental classification (IDLVQ-C) and regression (IDLVQ-R) 
problems. Second, we develop intra-class variance regularization, less forgetting constraints and 
calibration factors to mitigate catastrophic forgetting in class-incremental learning. Finally, the 
proposed methods achieve state-of-the-art performance on incremental few-shot classification 
and regression datasets. 

Methodology 

The general framework of IDLVQ for both classification and regression can be derived from a 
Gaussian mixture perspective (Ghahramani & Jordan, 1994), with a simplified covariance 
structure and supervised deep representation learning. In the base dataset (t = 1), a raw input x is 
projected into a feature space by a deep neural network 𝑓θ1, where θ1 denotes the parameters in 

neural networks. In addition, N1 reference vectors 𝑀1 = {𝑚1
1, … , 𝑚𝑁1

1 } are placed in the feature 

space, which can be learned to capture the representation of the base dataset. More reference 
vectors will be added incrementally while learning novel tasks.  
 

The marginal distribution 𝑝(𝑓θ1(𝑥)) of feature vector can be described by a Gaussian mixture 

model 𝑝(𝑓θ1(𝑥)) = ∑ 𝑝(𝑖)𝑝(𝑓θ1(𝑥)|𝑖)𝑁1

𝑖=1  of N1 components, where the prior 𝑝(𝑖) = 1/𝑁1 and the 

component distribution 𝑝(𝑓θ1(𝑥)|𝑖) is Gaussian. By assuming that each component distribution 

is isotropic Gaussian centred at 𝑚𝑖
1 with the same covariance, the posterior distribution of a 

component given the input is 

𝑝1(𝑖|𝑥) =
κ(𝑓θ1(𝑥), 𝑚𝑖

1)

∑𝑁1

𝑗=1 κ(𝑓θ1(𝑥), 𝑚𝑗
1)

 

 

where κ(𝑓θ1(𝑥), 𝑚𝑖
1) = exp(−|𝑓θ1(𝑥) − 𝑚𝑖

1|2/γ) is a Gaussian kernel and γ is a scale factor. The 

conditional expectation of the output from a Gaussian mixture is �̂� = ∑ 𝑝1(𝑖|𝑥)𝑞𝑖
1𝑁1

𝑖=1 , where 𝑞𝑖
1 is 

the reference target associated with reference vector 𝑚𝑖
1. In classification problems, 𝑞𝑖

1 is either 0 

or 1 indicating whether 𝑚𝑖
1 and 𝑥 have the same label. Since each reference vector is assigned to a 

class at initialization, 𝑞𝑖
1 is fixed and does not require learning. Meanwhile, 𝑞𝑖

1 in regression 

problems is real-valued and has to be learned. The weights in neural networks θ1, reference 

vectors 𝑀1, reference targets 𝑞𝑖
1 (in regression problems only) and the scale factor γ are learned 

concurrently by minimizing a loss function between the true label $y$ and the predicted label �̂�. 
The proposed IDLVQ is a nonparametric method as it makes prediction based on similarity to 
reference vectors, instead of using any regression or classification weights. The capacity of the 
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model grows naturally by adding more reference vectors to learn novel tasks, while the old 
knowledge is preserved in existing reference vectors. 

Experiments 

We empirically evaluate the performance of IDLVQ-C on incremental few-shot classification on 
CUB200-2011 (Welinder et al., 2010) and miniImageNet datasets (Vinyals et al., 2016). The 
dataset is split into base classes and multiple groups of novel classes. We apply standard data 
augmentation, including random crop, horizontal flip and color jitter, on all training images. After 
each training session, the model performance is evaluated on a test set, which contains all classes 
that the model has been trained on. 
 
CUB dataset is composed of 200 fine-grained bird species with 11,788 images. We split the 
dataset into 5894 training images, 2947 validation images and 2947 test images. All images are 
resized to 224 X 224. In addition, the first 100 classes are chosen as base classes, where all training 
samples in base classes are used to train the base model. The remaining 100 classes are treated as 
novel categories and split into 10 incremental learning sessions. Each incremental learning 
session contains 10 novel classes and 5 randomly selected training samples per class (10-way 5-
shot). 
 
miniImageNet dataset is a 100-class subset of the original ImageNet dataset (Deng et al., 2009). 
Each class contains 500 training images, 50 validation images, and 50 test images. The images 
are in RGB format of the size 84 X 84. We choose 60 and 40 classes for base and novel classes, 
respectfully. The 40 novel classes are divided into 8 sessions and each session contains 5 novel 
classes with 5 randomly selected training samples per class (5-way 5-shot). 
 
ResNet18 (He et al., 2016) is used as the feature extractor for incremental classification problems. 
The learning process for each dataset is repeated 10 times and average test accuracy is reported.  
 
The proposed method is compared to six methods for few-shot class-incremental learning: 
finetuning using Dt, joint training using the entire training set from all encountered classes, iCaRL 
(Rebuffi et al., 2017), Rebalancing (Hou et al., 2019), ProtoNet (Snell et al., 2017), incremental 
learning vector quantization (ILVQ) (Xu et al., 2012), SDC (Yu et al., 2020), and Imprint (Qi et 
al., 2018). Note that ILVQ is applied to the features extracted by neural networks in our 
experiment.  
 

 
Table 1. Prediction accuracy on CUB all classes using 10-way 5-shot incremental 
setting 
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Table 2. Prediction accuracy on miniImageNet all classes using 5-way 5-shot 
incremental setting 
 
The incremental few-shot learning results on CUB and miniImageNet are shown in Tables 1 and 
2, respectively. Our method outperforms fine-tuning, iCaRL (Rebuffi et al., 2017), and ProtoNet 
(Snell et al., 2017) by a large margin. Simply fine-tuning the weights in classifier with few-shot 
training samples for novel classes significantly deteriorates the prediction accuracy. Although 
iCaRL alleviates catastrophic forgetting by tuning the model with a mix of old exemplars and novel 
few-shot data, the prediction accuracy still drops quickly because iCaRL requires sufficient 
samples per class to achieve satisfactory performance.  
 
The ProtoNet relies on distance to prototypes (the mean of features within a class) to make 
classification but the fixed feature extractor may not be able to well separate novel classes. ILVQ 
is slightly better than ProtoNet because prototypes can be learned adaptively when more classes 
are available in incremental learning sessions. Some prototypes in ILVQ are close to the border of 
a class, which are more effective than class centroids in ProtoNet. However, ILVQ does not achieve 
the best performance because the feature extractor is fixed and cannot be learned along with the 
prototypes. IDLVQ-C has a small gain in the first couple of incremental few-shot learning sessions 
compared with SDC (Yu et al., 2020) and Imprint (Qi et al., 2018). Similar to ProtoNet, SDC also 
relies on prototypes to make classification. The performance of SDC is better than that of ProtoNet 
because SDC fine-tunes the feature extractor with novel dataset and compensates the drift in 
prototypes. However, the compensation for the drift of old-class prototypes can be less accurate 
in SDC because it is approximated by samples in novel classes. In parallel, the imprint method 
directly computes the normalized classification weights from the average of normalized features 
within a novel class. The imprint method avoids imbalanced classification weights and 
circumvents the overfitting in few-shot class-incremental learning through weight normalization. 
Nevertheless, the fixed feature extractor in the imprint method may not be well suited for novel 
classes. In contrast, IDLVQ-C updates the feature extractor only when necessary and compensates 
the shift of old reference vectors more accurately using exemplars from old classes. That is why 
the gain of IDLVQ-C increases with more incremental few-shot learning sessions. The 
performance of SDC, Imprint and IDLVQ-C is better than offline joint training in early sessions 
of incremental few-shot learning. Offline joint training may not result in oracle performance due 
to extremely imbalanced samples between base classes and novel classes. 
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Conclusions 
 
A new incremental few-shot learning approach is developed to harmonize old knowledge 
preserving and new knowledge adaptation through quantized vector in deep embedded space. 
Prediction is made in a nonparametric way using similarity to learned reference vectors, which 
circumvents biased weights in a parametric classification layer during incremental few-shot 
learning. For classification problems, additional mechanisms are developed to mitigate the 
forgetting in old classes and improve representation learning for few-shot novel classes. For 
regression problems, the proposed approach has been reinterpreted as a kernel smoother to 
predict real-valued target over novel domain. 
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Appendix 6: Security scan detection 
Shashank Saurav, Anmol Garg 

 

1.0 Introduction 
 
Security concerns have made air travel an invasive affair. It is critical to the safety of all who fly 
that all luggage, hand luggage and each passenger’s belongings are checked by scanners to ensure 
compliance with restrictions. Hence, X-ray scanning and analysis of items in the baggage is an 
essential aspect of airport security. 
 
Current systems are designed to manually check for each scanned item using X-ray scanning 
equipment. This baggage check is usually required at airports or other transportation hubs such 
as bus or train stations where security of passengers is of high importance The project aims to 
utilize deep learning methodologies in Object Detection paradigm to automate baggage scanning 
and improve the security condition. This will further help save costs directed towards the manual 
checking and minimize any human mistakes. 
 
1.1 Literature Review 
 
One of the first Object Detection algorithms (1) repurposed classifiers to perform detections. To 
detect an object, these systems take a classifier and evaluate it at various locations and scales in 
an image using sliding windows approach. It involves taking multiple crops of the input image 
and then each crop is fed to a deep Convolutional Neural Network (CNN) to make a classification 
decision. The crop dimensions, shape would be an issue as the object may appear at any location 
with any shape and size. This limitation was alleviated by applying several crop sizes and 
dimensions and running them all through the CNN but this posed a time and computation cost 
issue. 
 
In one of the other papers (2) Regional – Convolutional Neural Network (R-CNN) region proposal 
networks were used to capture blobby (feature-rich) regions which spits out a finite number of 
boxes where an object can be potentially present. These limited region proposals are then fed to a 
CNN for object classification. After classification, post-processing is used to refine the bounding 
boxes, eliminate duplicate detections, and rescore the boxes based on other objects in the scene. 
However, this still needed finite number of boxes to be fed to CNN for processing rendering 
redundant computations. Variants of R-CNN such as Fast R-CNN & Faster R-CNN (3) have come 
up since then. 
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The current state-of-the-art algorithm You Only Look Once (YOLO) (4) entered the domain in 
2018 and dominated the Object Detection paradigm since then with incremental improvements 
in different versions. Instead of doing multiple forward propagations of proposed regions on deep 
CNN, YOLO makes grid cells of the image and then makes proposed predictions on each grid cell. 
This way, only a single forward propagation of the image through a deep Neural Network is 
needed (thus, the name, You Only Look Once) which saves computation cost and time.  
 
2.0 You Only Look Once (YOLO V3) 
 
You Only Look Once (YOLO V3) is an improvement over previous YOLO detection networks. 
Compared to prior versions, it features multi-scale detection, stronger feature extractor network, 
and some changes in the loss function. As a result, this network can now detect many more targets 
from big to small. And, of course, just like other single-shot detectors, YOLO V3 also runs quite 
fast and makes real-time inference possible.  
 
2.1 Architecture 
 

YOLO V3 network makes use of only convolutional layers, making it a fully convolutional network 
(FCN). 
 

 
Fig. 1: YOLO V3 Architecture (5) 

 

The whole network is a chain of multiple blocks with some strides 2 convolution layers in between 
to reduce dimension. Inside a block, there’s just a bottleneck structure (1x1 followed by 3x3) plus 
a skip connection.  No form of pooling is used.  
 
2.2 Working 
 

The whole system can be divided into two major components: Feature Extractor and Detector; 
both are multi-scale. When a new image comes in, it goes through the feature extractor first so 
that we can obtain feature embeddings at three (or more) different scales. Then, these features 
are fed into three (or more) branches of the detector to get bounding boxes and class information. 
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Fig. 2: Overall Working (5) 

 
2.2.1 Multi-Scale Feature Extractor 
 
If the goal is to do multi-class classification, an average pooling and a 1000 ways fully connected 
layers plus softmax activation will be added. However, in the case of object detection, detection 
head instead of classification head is added to the feature extractor. And since YOLO V3 is 
designed to be a multi-scaled detector, features from last three residual blocks are all used in the 
later detection. In the diagram below, assuming the input is 416x416, so three scale feature vectors 
would be of size 52x52, 26x26, and 13x13. 

 
Fig. 3: Multi-Scale Feature Extractor (5) 

 
The network down samples the input image until the first detection layer, where a detection is 
made using feature maps of size 13x13. Further, layers are up sampled by a factor of 2 and 
concatenated with feature maps of a previous layers having identical feature map sizes. Another 
detection is now made using feature maps of size 26x26. The same up sampling procedure is 
repeated, and a final detection is made using feature maps of size 52x52. 
 

2.2.2 Multi-Scale Detector 
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Once we have three features vectors, we can now feed them into the detector. Multiple 1x1 and 
3x3 convolution layers are used before a final 1x1 convolution layer to form the final output. For 
medium and small scale, it also concatenates features from the previous scale.  
 
Assuming the input image is (416, 416, 3), the final output of the detectors will be in shape of [(52, 
52, 3, (4 + 1 + num_classes)), (26, 26, 3, (4 + 1 + num_classes)), (13, 13, 3, (4 + 1 + num_classes))] 
where num_classes is the total number of classes that a detected item, in an image, can belong 
to. The three items in the list represent detections for three scales.  

 
Fig. 4: Multi-Scale Detector (5) 

 
2.2.3 Interpreting Output 
 
The goal of object detection is to get a bounding box and its class.  
 
Anchor box is a prior box that have pre-defined aspect ratios. These aspect ratios are determined 
before training by running K-means on the h, w of ground truth bounding boxes of training 
dataset.  
 
Since the convolution outputs a square matrix of feature values (like 13x13, 26x26, and 52x52 in 
YOLO), we define this matrix as a grid and assign anchor boxes to each cell of the grid. In other 
words, anchor boxes anchor to the grid cells, and they share the same centroid. And once we 
defined those anchors, we can determine how much does the ground truth box overlap with the 
anchor box and pick the one with the best Intersection Over Union (IOU) area and couple them 
together.  
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Fig. 5: Anchor Box (5) 

 

In YOLO v3, we have three anchor boxes per grid cell. And we have three scales of grids. Therefore, 
we will have 52x52x3, 26x26x3 and 13x13x3 anchor boxes for three different scales. For each 
anchor box, network predicts 3 things: 
 
1. The location offset against the anchor box: tx, ty, tw, th. This has 4 values. 
2. The objectness score to indicate if this box contains an object. This has 1 value. 
3. The class scores to tell us which class this box belongs to. Number of values is equal to number 
of classes. 
 
In summary, we are predicting 4 + 1 + num_classes values for one anchor box.  
 
The following log transformations describe how the network output is transformed to obtain 
bounding box predictions. 
 
x = sigmoid(tx) + Cx 
y = sigmoid(tx) + Cy 
w = exp(tw) * pw 
h = exp(th) * ph     
where,  
x, y = center coordinates of the predicted bounding box 
w, h = width and height of the predicted bounding box respectively 
Cx, Cy = Top left coordinates of the grid cell 
pw, ph = Dimensions of anchor boxes for the grid cell 
 
The objectness score is passed through a sigmoid, to interpret as a probability (𝑃0). The class 
scores are passed through softmax to represent the probabilities of the detected object belonging 

to a particular class (𝑃𝐶
𝑗
) 

 
2.3 Training  
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YOLO V3 makes prediction across 3 different scales. This means, with an input image of size 416 
x 416, we make detections on scales 13 x 13, 26 x 26 and 52 x 52. And, therefore we have 52x52x3, 
26x26x3 and 13x13x3 bounding boxes predictions for the three scales respectively. 
 
Out of many bounding box predictions per scale, only one needs to be chosen to compare against 
the ground truth bounding box and further calculate loss. The cell (on the input image) containing 
the center of the ground truth box is chosen to be the one responsible for predicting the object. 
Now, this cell can predict three bounding boxes. The bounding box responsible for detecting the 
object (final predicted bounding box) will be the one whose anchor has the highest IOU area with 
the ground truth box. Finally, loss is calculated using that final predicted bounding box and the 
true label.  
 
The above steps are applied to all the three scale of image separately to get one prediction vector 
at each scale. Loss for each scale are summed together to get total loss for that image. 
 
With the final predicted bounding box, we can now calculate the loss against the ground truth 
labels.  
 
The loss function consists of four parts: 
 

• L-2 Regression Loss on boundary box co-ordinates and dimensions 

• Cross Entropy Loss on predicted class probabilities (𝑃𝐶
𝑗
) 

• Binary Cross Entropy Loss on objectness probability (𝑃0) which indicates how likely is 
there an object in the final predicted bounding box  

• Binary Cross Entropy Loss on no-objectness probability to penalize false positives 
proposals.  
 
 

 
 
where,  
t = 1 if object is present, else t = 0 
𝑁𝑏 : bounding boxes from all the grid cells except the responsible grid cell 

𝑃0
𝑖 : 𝑃0  corresponding to 𝑁𝑏 

𝑃0
∗: 𝑃0  corresponding to final predicted bounding box 

𝑥𝑡 ,  𝑦𝑡 , 𝑤𝑡,  ℎ𝑡 : true bounding box coordinates and dimensions 
x, y, w, h: box coordinates and dimensions corresponding to final predicted bounding box 
𝐶𝑗 = 1 if true class = j, else 𝐶𝑗 = 0 

 
2.4 Testing  
 
At test phase, for a given input image of size 416 x 416, YOLO predicts ((52 x 52) + (26 x 26) + 13 
x 13)) x 3 = 10647 bounding boxes. In order filter one, out of 10647 predicted bounding boxes, 
against each ground truth bounding box, Non-Max Suppression (NMS) is applied on the 
predictions.  
 
For each input image: 
 

▪ Drop all predicted bounding boxes with objectness probability less than a certain 
threshold (confidence threshold) 

𝐿𝑜𝑠𝑠 = − 𝑡 ln 𝑃0
∗ − (1 − 𝑡) ln 𝑃0

∗ - ∑  ln(1 − 𝑃0
𝑖)

𝑁𝑏
𝑖=1  + ||𝑥 − 𝑥𝑡||

2

2
+ ||𝑦 − 𝑦𝑡||

2

2
 + ||𝑤 − 𝑤𝑡||

2

2
+ ||ℎ − ℎ𝑡||

2

2
  

               - ∑ 𝐶𝑗
𝑁𝑐
𝑗=1 ∗ ln( 𝑃𝐶

𝑗
)  
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▪ For each class of object detected, sort the remaining predictions is descending order of 
objectness probability 

• Compare intersection-over-union (IOU) areas between the top prediction and the 
rest, and drop whose areas is above a certain threshold (NMS threshold) 

• Repeat the above step for the next top prediction. 
 

3.0 Methodology 
 
The methodology followed is discussed using the different aspects. The overall approach is 
summarized below: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Methodology Pipeline 
 

3.1 Data Reading and Pre-Processing 
 

In the current work, a dataset containing 2,050 images is used containing different class of items 
for detection. The breakdown of the dataset is as follows: 
 

Class Description Class ID Original Count of Images 

Handgun 0 549 

Kitchen Knife 1 50 

Cutter Knife 2 50 

Hard Disk 3 50 

USB 4 50 

Hard Disk – 2 5 50 

Kitchen Knife – 2 6 50 

Shuriken 7 50 

Battery 8 50 

Battery – 2 9 50 

Phone 10 50 

Table 1. Dataset breakdown 

Experiments (Fine Tuning and Testing of the Model)  

Data Augmentation

Training - Validation -Test Split

Data Reading and Pre-Processing
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For each image, ground truth bounding boxes’ dimensions were provided for each banned item 
present in the image in the following format: 
 
[class id of the banned item, x, y, w, h] where,  x, y: centre coordinates of the bounding box 
          w, h: width and height of the bounding box 
  
To ease the detection, different types of hard disk, kitchen knife and battery were combined, giving 
a total of 7 classes. Since all the input images had different dimensions, therefore the images were 
resized and padded to dimension of 416 which ensures that the grid scales at which detection is 
performed comes out to be 13, 26 & 52 respectively. This resizing operation is performed while 
maintaining the aspect ratio of the image.  
 
Metrics: The metrics we considered to evaluate the model were precision and recall. 

• Recall =  
Number of banned items detected

Total Number of banned items Actually Present
 

• Precision =  
Number of  banned items in the predictions

Total Number of items detected as banned
 

 
More focus was given on recall to avoid False Negatives 
 
3.2 Training-Validation-Test Split 
 
The breakdown of the dataset split is as follows: 
 

Class  Class 
ID 

Original 
Count  

Train 
Count 

Valid 
Count 

Test 
Count 

Handgun 0 549 524 15 10 

Knife 1 150 125 15 10 

Phone 2 50 25 15 10 

Hard Disk 3 100 75 15 10 

USB 4 50 25 15 10 

Shuriken 5 50 25 15 10 

Battery 6 100 75 15 10 

Total 
 

1049 674 105 70 

Table 2. Dataset split 
 
3.3 Data Augmentation 
 
As the count of images for most of the classes were less, the images were augmented by flipping 
and rotation. Accordingly, the ground truth bounding boxes’ coordinates and dimensions were 
changed. 
 

• Image Flipping: The images were flipped horizontally, vertically, and both 
horizontally & vertically i.e. dual flipping. The center coordinates of the ground truth 
bounding boxes were calculated accordingly. The width & height of the boundary box 
remained the same. 
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Horizontal flip: 
 xnew = 1 – xorig 
 ynew = yorig 
 
Vertical flip: 
 xnew = xorig 
 ynew = 1 – yorig 

 
Both Horizontal & Verical (Dual) flip: 
 xnew = 1 – xorig 
 ynew = 1 – yorig 

 

• Image Rotation: Each of the flipped images were rotated clockwise by 90, 180 & 270 
degrees. The center coordinate as well as height and width were adjusted accordingly. 
 

90-degree clockwise rotation: 
xnew = 1 - yorig 

      ynew = xorig 
      wnew = horig 
      hnew = worig 

 
180-degree clockwise rotation: 

xnew = 1 - xorig 
      ynew = 1 - yorig 
      wnew = worig 
      hnew = horig 

 
270-degree clockwise rotation: 

xnew = yorig 
      ynew = 1 - xorig 
      wnew = horig 
      hnew = worig 

 
 The count of images after augmentation is summarized below: 
 

Class  Class 
ID 

Original 
Count  

Train Count 
(Augmented) 

Valid 
Count 

Test 
Count 

Handgun 0 549 8384 15 10 

Knife 1 150 2400 15 10 

Phone 2 50 800 15 10 

Hard 
Disk 

3 100 1600 15 10 

USB 4 50 800 15 10 

Shuriken 5 50 800 15 10 

Battery 6 100 1600 15 10 

Total 
 

1049 16384 105 70 

Table 3. Dataset split after data augmentation 
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3.4 Experiments (Training and Testing) 
 
For training, we used pre-trained weights of YOLO v3 model (trained on COCO dataset). Since 
none of the classes were common in scanned baggage and COCO dataset and domain of both 
dataset were very different (visibly), all layers of YOLO v3 network were fine tuned. 
 
3.4.1 Experiment - 1 
 
1. We weighted the no objectness part of the loss function (discussed in 2.2.4) to heavily penalize 
false positives. Following is the loss function that was used for training: 
 

𝐿𝑜𝑠𝑠 = − 𝑡 ln 𝑃0
∗ − (1 − 𝑡) ln 𝑃0

∗ −  𝟓 ∗ ∑  ln(1 − 𝑃0
𝑖)

𝑁𝑏
𝑖=1 +  ||𝑥 − 𝑥𝑡||

2

2
+ ||𝑦 − 𝑦𝑡||

2

2
+                ||𝑤 −

𝑤𝑡||
2

2
+ ||ℎ − ℎ𝑡||

2

2
 - ∑ 𝐶𝑗

𝑁𝑐
𝑗=1 ∗ ln( 𝑃𝐶

𝑗
)  

 
2. Oversampled images of minority class to deal with class imbalance. 
 

Class 
Description 

Training Count of 
Images 
(Oversampled) 

Validation 
Count of 
Images 

Test Count of 
Images 

Handgun 8384 15 10 

Knife 8000 15 10 

Hard Disk 7200 15 10 

USB 8000 15 10 

Shuriken 8000 15 10 

Battery 7200 15 10 

Phone   8000 15 10 

Table 4. Oversampled training set 
 

3. Hyperparameters: 
 
 
 
 
 
 
 

 
 
 
Results 
 
a) Model Dynamics 
 

• Learning Rate = 0.01 

• Batch Size = 18 

• Optimizer = Adam 

• Confidence Threshold = 0.9 

• IOU threshold = 0.5 

• NMS Threshold = 0.4 

• Training Epochs = 32 
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Fig. 7: Training Dynamics 

 
Fig. 8: Validation Metrics Flow 

 

b) Scores 
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After 27 Epochs: Best Validation Precision 
 

     Training                Validation      Test

 
Table 5. Result on best precision epoch 

 
After 20 Epochs: Best Validation Recall 

 
            Training                               Validation           Test

 
Table 6. Result on best recall epoch 

 
 
3.4.2 Experiment - 2 
 
1. We weighted the no objectness part of the loss function (discussed in 2.2.4) to heavily penalize 
false positives. The following is the loss function used for training: 
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𝐿𝑜𝑠𝑠 = − 𝑡 ln 𝑃0
∗ − (1 − 𝑡) ln 𝑃0

∗ −  𝟓 ∗ ∑  ln(1 − 𝑃0
𝑖)

𝑁𝑏
𝑖=1 +  ||𝑥 − 𝑥𝑡||

2

2
+ ||𝑦 − 𝑦𝑡||

2

2
+  ||𝑤 −

𝑤𝑡||
2

2
+ ||ℎ − ℎ𝑡||

2

2
 - ∑ 𝐶𝑗

𝑁𝑐
𝑗=1 ∗ ln( 𝑃𝐶

𝑗
)  

 
2. To deal with class imbalance, instead of oversampling, balanced batch was sent at every 
iteration. Single batch comprised of 3 images of each of Phone, Knife, USB, Shuriken and 2 images 
for each of Handgun, Hard Disk and Battery 
 

3. Hyperparameters: 
 

 

 

 

 

 
 
 
 
 

Results 
 

a) Model Dynamics 
 

 
Fig. 9: Training Dynamics 
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• Learning Rate = 0.01 

• Batch Size = 18 

• Optimizer = Adam 

• Confidence Threshold = 0.9 

• IOU threshold = 0.5 

• NMS Threshold = 0.4 

• Training Epochs = 42 
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Fig. 10: Validation Metrics Flow 

b) Scores 
 

 

 

 

After 21 Epochs: Best Validation Precision 
    
                     Training           Validation      Test 

 
Table 7. Result on best precision epoch 
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After 9 Epochs: Best Validation Recall 

 

     Training                Validation      Test

 
Table 8. Result on best recall epoch 

 
 
 
3.4.3 Experiment - 3 
 
1. We weighted the no objectness part of the loss function (discussed in 2.2.4) to heavily penalize 
false positives. Following is the loss function that was used for training: 
 

𝐿𝑜𝑠𝑠 = − 𝑡 ln 𝑃0
∗ − (1 − 𝑡) ln 𝑃0

∗ −  𝟓 ∗ ∑  ln(1 − 𝑃0
𝑖)

𝑁𝑏
𝑖=1 +  ||𝑥 − 𝑥𝑡||

2

2
+ ||𝑦 − 𝑦𝑡||

2

2
+

 ||𝑤 − 𝑤𝑡||
2

2
+ ||ℎ − ℎ𝑡||

2

2
 - ∑ 𝐶𝑗

𝑁𝑐
𝑗=1 ∗ ln( 𝑃𝐶

𝑗
)  

 
2. To deal with class imbalance, instead of oversampling, balanced batch was sent at every 
iteration. Single batch comprised of 3 images of each of Phone, Knife, USB, Shuriken and 2 images 
for each of Handgun, Hard Disk and Battery. 
 
3. Anchor Box dimensions were obtained by running K-Means on scanned baggage images. 
Custom anchor box dimensions obtained were (19, 19),  (88, 65), (67, 87), (124, 95), (95, 124), 
(68, 192), (192,70), (166, 126), (125, 169). 
 
4. Hyperparameters: 

 

 

 

 
 

 

 
 

Note: NMS Threshold reduced to 0.0005 from 0.4 for testing 

• Learning Rate = 0.01 

• Batch Size = 18 

• Optimizer = Adam 

• Confidence Threshold = 0.9 

• IOU threshold = 0.5 

• NMS Threshold = 0.4 

• Training Epochs = 42 
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Results 
 
a) Model Dynamics 

 
 Fig. 11: Training Dynamics 

 

                
Fig. 12: Validation Metrics Flow 

 
b) Scores 
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After 18 Epochs: Best Validation Recall 
 

             Training              Validation      Test 

 
 Table 9. Result on best recall epoch 

 

After 22 Epochs: Best Validation Precision 

 

             Training              Validation      Test 

        

 
Table 10. Result on best precision epoch 

 

 
 
 
 
 
 
 
 

Note: NMS Threshold reduced to 0.0005 from 0.4 
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Sample Output Images 

  

 
Fig. 13: Sample Output Images 
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Appendix 7: A novel GRU-driven stochastic 
degradation process for battery forecasting 
Zihan Zhang 
 

Background 
 
In recent decades, there has been significant growth in the development of rechargeable battery-
powered devices, such as electric vehicles, leading to a huge demand for batteries with high 
reliability and quality. End of life (EoL) is a critical indicator of battery health; it can be estimated 
by either adaptive stochastic processes or advanced machine learning techniques. However, these 
approaches either follow the degradation path having a specific form or lack stochastic 
interpretation due to its black-box nature. To address these challenges, a GRU-driven stochastic 
degradation process is proposed that can formulate battery degradation, in which drift fluctuation 
is controlled by a recursive Gaussian distribution with its mean learnt from a GRU-driven 
degradation pattern. Due to the non-Markovian state transitions, a sampling-based expectation 
maximization algorithm is developed to estimate model parameters based on historical 
observations. To validate the superiority of the proposed methods, a case study of NASA battery 
data was implemented. The results show a better performance with respect to EoL accuracy than 
that achieved with traditional methods. 
 
Introduction 
 
Due to their high energy, high power density, and long cycle life, Li-ion batteries are widely used, 
for example, in electric vehicles (EVs) and hybrid EVs. Because battery reliability is essential to 
the safe and reliable operation of a vehicle, increasing efforts have been invested in enhancing 
battery health management. Typically, battery states, as described by state-of-health (SoH) series, 
degrade over increasing numbers of charge and discharge cycles. However, as battery ages, 
battery SoH forecasting becomes challenging, owing to complicated degradation mechanisms and 
varying operating conditions. 
 
Literature Review 
 
Model-based and data-driven forecasting methods are the conventional approaches in battery 
prognostic problems. Model-based capacity forecasting method usually refers to electrochemical 
model, equivalent circuit model, empirical model and stochastic model. Electrochemical model 
and equivalent circuit model can reveal the physical or chemical dynamics of the battery 
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properties by exploring complex aging mechanisms, leading to rapid advances in theoretical 
research and battery design. However, the high cost of measuring the internal degradation 
parameters makes their practical application infeasible. In contrast, empirical models may be 
useful, because the mathematical forms of the degradation trajectory can be mined from historical 
battery degradation processes, such as linear model, exponential model, polynomial model and 
Verhulst model. Similarly, stochastic models can capture the degradation uncertainty based on 
nonlinear Wiener processes with specific drift terms, such as linear and exponential. 
Furthermore, advanced filtering techniques, such as Kalman filter, extended Kalman filter (EKF), 
unscented Kalman filter (UKF) and particle filter (PF), can help either empirical or stochastic 
models reduce impacts of measurement noise and external disturbance to further increase 
forecasting accuracy. However, without prior knowledge of the underlying degradation 
mechanisms and limited by specific expressions of degradation path (i.e., mathematical form in 
empirical models and drift terms in stochastic models), it is difficult to generalize them to 
batteries of diverse types. 
 
Some alternative methods to model-based approaches have been investigated, but none can 
reliably predict battery capacity degradation. Data-driven capacity forecasting methods rely only 
on historical measurements to establish a degradation model, without prior knowledge of 
inherent degradation behavior, which is more suitable for complicated prognostics issues. 
Optimization methods for data-driven models integrating kernel techniques are popular for 
improving the prediction efficiency, such as support vector machine (SVM), relevant vector 
machine (RVM) and Gaussian process regression (GPR). But it is difficult to generalize them due 
to their sensitive kernel parameters. To overcome this drawback, neural network-based methods 
have been implemented, such as autoregressive model, Elman neural network and temporal 
convolutional network. But their accuracy is limited to short-data windows. Recurrent neural 
networks (RNNs) can model long-range dependencies, but it is hard to implement back 
propagation in practice because repeatedly applying the squashing nonlinear activation function 
causes the model to predict that capacity will decay exponentially over time.  
 
More practically, Zhang et al. adopted long short-term memory (LSTM) recurrent neural network 
to capture long-term degradation trends and predict battery end of life (EoL), in which an extra 
memory cell is introduced to solve the vanishing gradient problem, and he used a dropout method 
to mitigate model overfitting. Besides, gated recurrent unit (GRU) achieves faster operation for 
real-time prediction with less training parameters than LSTM. Although GRU/LSTM exhibit 
better performance in learning long-term dependence than RNN, there is no accurate and general 
battery degradation model that not only describes stochastic degradation characteristics but also 
tracks underlying degradation evolution via mining long-term dependencies among capacity 
series. 
 
Contributions 
 
To close the gap, a GRU-driven stochastic degradation process is proposed for tracking battery 
degradation with age. Specifically, the hidden state of the GRU is introduced into the Wiener 
degradation process as a pattern term for capturing long dependencies in historical drifts. Then, 
a differential function maps the pattern term to the mean of the drift space. Thus, drift is updated 
based on the entire degradation history instead of only the last time step. However, in parameter 
estimation, using the traditional expectation maximization (EM) algorithm becomes infeasible 
due to the non-Markovian drift transition. Thus, a sampling-based EM (SEM) algorithm is 
developed to handle the no closed form drift transition. A sampling step using Markov Chain 
Monte Carlo (MCMC) is added between the conventional E- and M-steps to obtain posterior 
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samples of drifts. Finally, a forecasting algorithm is proposed to estimate battery SoH and EoL 
following the generative process of predicting degradation trajectory. 
 
To summarize, this project makes the following contributions to current battery prognostics: 
 

1) A GRU-driven nonlinear degradation pattern is designed to control the evolution of 
battery degradation; 

2) Drift is updated recursively from a Gaussian distribution whose mean is mapped from a 
pattern term rather than the value in the last times-step. 

3) A novel GRU-driven stochastic degradation model is proposed to capture battery 
degradation path, which combines interpretability of stochastic process and flexibility of neural 
networks. 

4) A sampling-based expectation maximization algorithm is developed to estimate 
parameters of the proposed model by learning posterior drift samples drawn via the MCMC 
algorithm. 

 


