Long term asset procurement strategies

Background

- Some projects are very large and span a long timeline
- Infrastructure, military
- While projects are underway, the world continues to move forward
- The plans we make may become obsolete during the project
- Factors affected by project duration
- Scope
- Exposure to risk
- Continuation of project started by previous student

Engineering

Two directions

Probability distributions

- What are the likely values of projects of different durations?
- Select parameters for exploration
- Simulate uncertainty factors
- Generate distribution

Duration indifference

- What values do the projects need to have to be the same as each other?
- Compute expected values of different project lengths
- Find the relative value of indifference

Engineering

Part I: Probability distributions

Problem setup

- Uncertainty parameters:
- Annual depreciation U[0.01, 0.02]
- Annual probability of catastrophic event 0.05
- Percentage of project value lost in the event of a catastrophic event U[0.2, 0.8]
- Project durations of interest:
- 5, 10, 20
- Only permit 1 instance of step loss per project
- 1000 replications each

Engineering

Results

5 year project

10 year project

20 year project

Engineering

Part II: Duration indifference

How do we equate two projects of different length?

- "How much does a short project have to be worth in order to be equivalent to a longer project?"
- Considering 5, 10 and 20-year projects
- Relative values of projects to make them the same net present value
- Parameters
- Annual depreciation 1\%
- Annual probability of step event 5\%
- Value lost at step event 50\%

Engineering

Expected value of any project

- Using total probability law:

$$
\begin{aligned}
\mathrm{E}(\text { project }) & =\mathrm{E}(\text { project } \mid \text { catastrophe }) \mathrm{P}(\text { catastrophe }) \\
& +\mathrm{E}(\text { project } \mid \text { no catastrophe }) \mathrm{P}(\text { no catastrophe })
\end{aligned}
$$

- The project value considers annual depreciation over n years ($n=5,10,20$), annual exposure to catastrophe, and a 50\% loss if there's a catastrophe

E(project)

Project duration	$E($ Project $)$
5	84.3424
10	72.2935
20	55.5558

- After considering the potential losses over the project duration, these are the expected value of each project (starts at 100\%)

Engineering

Duration comparison

Project duration	E(Project)
5	84.3424
10	72.2935
20	55.5558

```
Repeat for all years
between 5-20
```

- To compare the proportional value of a 5 -year project to a 10-year project
- Let x be the proportional value of a 5 -year project to a 10-year project $84.3424 x \geq 72.2935$
$-x \geq 0.8571$
- A 5-year project whose value is 86% of 10 -year project is equivalent
- Similarly, 10 to 20 is 77%

See table in report

Engineering

