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Executive summary 
Chi-Guhn Lee, C-MORE Director 

Introduction 

Throughout the past year, the C-MORE team, including staff, students, academics, and industry 

collaborators, has adapted well to pandemic conditions. We have continued to operate with work-

from-home modifications, and all meetings have happened virtually. Like many other 

organizations, we attended our first virtual conferences, and we hosted our progress meetings 

online. I am proud to say there has been no loss in quality – we have maintained steady and 

consistent work with our collaborating companies and engaged with new ones, including 

Canadian Electricity Association and Capital Power. In fact, it will be interesting to see what the 

next six months bring, as we may well decide some of our adaptations work too well to return to 

“normal.”  

The following report summarizes work undertaken since the meeting in December 2020. 

The C-MORE team 

Chi-Guhn Lee, Director 

Chi-Guhn has leveraged the all-virtual environment to give invited talks and seminars at 
conferences around the world. While a detailed list of talks is reserved for the Activities section of 
the report, one initiative of note is the resource extraction working group, spearheaded by Chi-
Guhn. This group met three times throughout the first part of 2021 to discuss ways C-MORE could 
better meet the needs of the mining sector. Outside this particular sector, Chi-Guhn is increasing 
the presence of C-MORE in asset management and maintenance optimization. On June 17, he will 
be hosting a workshop through the PEMAC GTA chapter, titled “Demystifying machine learning 
– hands on workshop using Excel.”  

Janet Lam, Assistant Director 

Janet has been working with graduate and undergraduate students to push on with various 

industry-sponsored research projects. In particular, she worked with CEA on a data audit project, 

Capital Power on a criticality project, Kinross on a machine learning case studies project, and 

Titan Technologies on two different wind-turbine projects. She also served as the lead writer in 

several grant proposals, including Gates Foundation Grand Challenges and LG Chem. She met 

virtually with several potential collaborators to discuss ways to combine forces and maintained as 

contact with current members to keep projects fresh. In other work, she taught three 
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undergraduate courses in Reliability and Maintainability, Operations Research, and Engineering 

Strategies. 

Andrew K. S. Jardine, Professor Emeritus 
Andrew has been active throughout the first half of 2021, serving on various committees as a 

reviewer, board member and more. He was a reviewer for papers submitted to the 15th World 

Congress on Engineering Asset Management (15th WCEAM), hosted online, but based out of 

Bonito Brazil, August 15-18, 2021. He is serving on the advisory board of Mechanical Systems and 

Signal Processing (MSSP) as an appointed member as of 2021. On February 8, Andrew was invited 

as a member of the editorial board for the Journal of Maintenance, Reliability and Condition 

Monitoring (jMARC), a new open access journal with Professor Jyoti K. Sinha from the University 

of Manchester as Editor in Chief. Through March 6, 7, 27, and 28, 2021, Andrew taught a graduate 

class in Maintenance Analysis and Optimization at the University of the West Indies in Trinidad. 

In April, he submitted the manuscript for the 3rd Edition of Maintenance, Replacement and 

Reliability: Theory and Application to CRC Press. The official publication date is 2022. The 

University of Western Australia appointed Andrew as an assessor for promotion of an academic 

to the rank of Professor, Level E, in April. He continued his work on the PEMAC awards 

committee, with meetings on April 16 and 27th. He was on the board of examiners to assess a PhD 

thesis titled Development of Strategies for Effective Maintenance of Induction Motors, Indian 

Institute of Technology (IIT) Kharagpur, on May 10, 2021. For the upcoming 11th IMA 

International Conference on Modelling in Industrial Maintenance and Reliability (MIMAR) 

taking place June 29-July 1, he is a member of the program committee.  

Dragan Banjevic, C-MORE Consultant 

Dragan continued to collaborate with C-MORE on projects with consortium members, mostly 
with Kinross Gold, TTC, and MOD.  He is currently busy with the implementation of the MOD 
spares management project. He has also provided help in other projects with C-MORE students, 
as well as in their research. 

Sharareh Taghipour, Ryerson, External Collaborator 

From January to June 2021, Sharareh lectured one session on the role of emerging technologies 

in physical asset management (University of West Indies, graduate course, with Andrew Jardine). 

She is working on a project entitled “Decentralized data analytics and optimization methods for 

Physical Asset Management” (NSERC Discovery grant), as well as two collaborative projects with 

industry: “Real-time optimization of production scheduling” and “Developing a decision support 

tool to optimize manufacturing for productivity and safeguarding the workforce against COVID-

19,” both with Axiom Group (NSERC Alliance). In addition, she is using the “Industry 4.0 Smart 

Factory System” to develop predictive maintenance models and real-time optimization of 

production scheduling (funding from the Ministry of Economic Development, Job Creation and 

Trade and John R. Evans Leaders Fund). She recently finished her collaborative project entitled 

“Developing methods for measuring social, economic, and environmental impacts of maintenance 

activities for physical assets,” with Fiix Inc. (NSERC CRD). Sharareh submitted a book chapter 

entitled “The role of emerging technologies in physical asset management” for the third edition of 

Maintenance, Replacement and Reliability by Andrew Jardine and Albert Tsang. Sharareh also 

presented “The role of emerging technologies in physical asset management” at the 15th 

International Physical Asset Management Conference, online, March 9-10, 2021, Tehran, Iran 

Scott Sanner, University of Toronto 
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Scott's group continued to work on a range of applied projects covering predictive modelling for 

residential HVAC (article published in Journal of Building Performance Simulation) and text 

analytics for urban studies (article published in Cities).  Scott's group has also continued 

fundamental AI research on the topic of continual learning for deep learning (with one conference 

paper published at AAAI-21), as well as conversational recommender systems (a conference paper 

published at WWW-21). 

Fae Azhari, University of Toronto 

Fae’s research group now consists of 5 doctoral students, 4 MASc students, and 4 undergraduate 
students. Her projects include: complex naval asset management using sensor data, optimizing 
the fabrication and performance of multifunctional cementitious composites, fibre optic sensors 
for vibration monitoring, sensing systems for prostheses and gait analysis, bridge scour 
monitoring, condition-based maintenance of bridges, and swimming pool freshwater usage 
optimization. Her group members submitted a number of journal articles and presented at virtual 
conferences this past year. Fae has initiated a number of new collaborations with colleagues in 
psychology, physiotherapy, medicine, and electrical, chemical, and biomedical fields. 

Jue Wang, Affiliate Professor 

Jue Wang is an Assistant Professor at Smith School of Business Queen’s University. He is 
currently supervising/co-supervising two PhD students on sequential decision making. He also 
started working on a new project on optimal learning and optimization when the system can stop 
due to random failure. He and his collaborator meet online several times a week to discuss this 
project. 

Ali Zuashkiani, Director of Educational Programs 

Ali has been busy providing consulting services to various industries, such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been particularly active working 
with JESCO steel company in Saudi Arabia and DP World in Dubai on the topic of spare parts 
management practice and with SABIC on the topic of RCM. He has been also working with 
Aramco in Saudi to train their engineers to get CMRP designation. Ali has been assisting the 
Institute of Asset Management in the development of a Subject Specific Guideline (SSG) on 
Management of Change and is working with General Forum on Maintenance and Asset 
Management (GFMAM) on the third edition of Asset Management Landscape. Ali has started 
working with Society for Maintenance and Reliability Professionals (SMRP); he will represent 
SMRP at GFMAM meetings and is working on a new body of knowledge of SMRP. Most training 
programs were cancelled or conducted online due to COVID-19, but a few managed to go through. 
These appear later in the Executive Summary under “Educational activities.”  

C-MORE graduate students  

Doctoral students 

Kuilin Chen, a third-year PhD student, is working on few-shot learning. One paper on incremental 

few-shot learning will be published in ICLR 2021; he also submitted a paper on few-shot learning 

with stochastic weight averaging to NeurIPS 2021. 

Michael Gimelfarb has continued his doctoral work on knowledge transfer in reinforcement 

learning and has been a postgraduate affiliate of the Vector Institute since April 2020. He is 

currently preparing two papers for submission to the NeurIPS Conference in 2021. 

Scott Koshman continues research on equipment health monitoring (EHM) for Halifax Class 

Frigates under the supervision of Fae Azhari. As a member of the International Council of Systems 
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Engineering (INCOSE), he recently participated in the 1st Virtual INCOSE International 

Workshop (IW2021). In his workplace, he is the lead in the development of graduate courses and 

the transition to a virtual delivery model in global strategic security studies. 

Seyedvahid Najafi is a full-time doctoral student working on the maintenance modelling and 

optimization of multi-unit series systems. A recent paper is under review by Reliability 

Engineering and Safety Systems and another has been accepted by the 11th IMA International 

Conference on Modelling in Industrial Maintenance and Reliability (MIMAR). 

Avi Sokol is a flex-time PhD student and full-time Business Data Scientist and Inventory Specialist 

who is researching the integration of Reinforcement Learning and Inventory Control to reduce 

waste in supply chains. He is currently working towards developing a novel algorithm with 

discrete-continuous action space and reward decomposition. 

Songci Xu is applying transfer learning to Intelligent Fault Diagnosis (IFD), one of the projects of 

LG Sciencepark. He is also working on the explanatory ability of deep domain 

adaptation via Optimal Transport Theory. 

Master’s students 

Tushar Aggarwal (MEng) is working on artificial intelligence and robotics. He completed a 

project on anomaly detection on train tracks using thermal imaging. 

Varun C Ananda Rao (MEng) is working on a carrier optimization project; the goal is to build a 

model that provides an optimized solution for maintaining inventory on the carrier. 

Ozkan Elmali (MASc) is working on a reinforcement learning approach to the vehicle routing and 

safe routing problem. As a newly registered student, he is currently taking several courses. 

Sahil Nagpal (MEng) is a part-time student who is currently working at Magna International. The 

main goal of his project is to implement a Predictive Maintenance protocol for critical components 

of a manufacturing equipment presently operating at one of Magna's Manufacturing facilities.  

Jeong Cheol Seok (MEng) is working on project to develop a deep learning model to predict the 

remaining useful life (RUL) of engines used in a mining site. He is also working on a project to 

develop a machine learning model that measures actual wind parameters such as speed and 

direction using a LiDAR measurement floating on sea surface. The preliminary model has been 

completed and is awaiting instructions from the requested company. 

Pooyan Sharifi (MEng) is working on a project on asset management and criticality analysis for 

a medium sized power generation company in the GTA. 

Zoha Sherkat Masoumi (MEng) is currently working on sensor-based maintenance for Kinross 

Gold Corporation. She is aiming to predict engine failures for trucks in real mine operating 

environment with the help of sensor readings. Her goal is to reduce the number of unscheduled 

truck failures to reduce downtime and save money.  

Jahyun Shin (MEng) is primarily interested in analytics and machine learning. Under Chi-Guhn 

Lee, she is taking charge of an early-stage deep learning research project to develop a model that 

can automatically detect and classify restricted items for an airport’s X-ray baggage scanner. She 

is also applying adversarial domain adaptation techniques to compensate for the small number of 

labelled X-ray images provided by the stakeholder 
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Sophie Tian (MASc) is in the first year of the program. She has been taking coursework and is 

conducting a literature review on time series classification methods. 

Katie Xu (MASc) has been working with collaborators in the Department of Materials Science and 

Engineering on the use of machine learning techniques for in-situ process monitoring and control 

in 3D printing systems. She has also been completing coursework. 

Zihan Zhang (MASc) has been completing coursework and working on a literature review on 

PHM application. In the summer session, she will work on the battery project with 

undergraduates. 

Independent thesis project 

Kimia Taghvaei Ganjali (IndE) graduated this year, and is now working as a logistics continuous 

improvement analyst at Walmart. She completed the CEA data audit project as her thesis. The 

objective was to build a framework for CEA to help assess their records and build a consistency 

throughout all sites working with CEA. 

C-MORE activities with consortium members  

Defence Science and Technology Laboratory (DSTL)  

The aircraft carrier spares optimization project continued under Dragan’s supervision with MEng 

student Varun C. Ananda Rao. They are developing a software tool to optimally stock spare parts. 

This project will be presented today. A second project in interpreting and fusing data from 

disparate environmental conditions began during this time with Siddharth Patel, an MEng 

student. This work is in its early stages. 

Department of National Defence (DND)  
C-MORE wrapped up the propulsion diesel engine project with recommendations on data 

collection and the implications of the oil analysis results. 

Kinross Gold Corporation  

We continued work on the machine learning business case project, with Zoha Sherkat-Masoumi 

and Theresa Taylor leading the project. The interim objective is to predict the remaining useful 

life (RUL) of the haul truck engines using sensor data. The current status of this project will be 

presented today. 

Toronto Transit Commission (TTC)  

TTC set a distinct timeline of interest for the linetest and re-inspection projects for decision 

making. The updated results of these projects will be presented today. 

C-MORE educational programs  
In December 2020, Ali Zuashkiani gave a five-day Physical Asset Management online course to a 

group of asset managers from different industries. In April 2021, Ali delivered a 5-day CMRP 

preparation training program to group of reliability engineers from Aramco in Saudi. Ali has been 

working with LEORON and PAMCo to deliver more C-MORE certified training programs 

including an upcoming five-day Asset Management 4.0 program that will be given online during 

August 2021 and a course on Spare Parts Management and Life Cycle Costing Management in 

September 2021. 
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Janet and Chi-Guhn’s new, complementary five-day course, Machine Learning and AI 

Applications in Physical Asset Management, or “PAM2,” will be delivered virtually in late June 

2021; it is offered through the School of Continuing Studies. We are very excited about this new 

course and see it as an important addition to the C-MORE repertoire.  

In November 2021, as in previous years, Andrew Jardine will be leading a five-day course in 

Physical Asset Management through the School of Continuing Studies. Other lead instructors are 

Don Barry and Sharareh Taghipour. Chi-Guhn Lee will be presenting as well. The course is 

consistently excellent, with high ratings from attendees. As in November 2020, it will be delivered 

virtually. 

Conclusion 
I generally conclude the Executive Summary with a retrospective look at the past six months, but 

in this case, I want to say a special thank you to everyone at C-MORE for their hard work, their 

dedication, and, above all, their creativity over the past year. Collectively, we have used the 

pandemic as an opportunity to change and grow. Thanks to all!  

Chi-Guhn Lee 
June 2021 
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C-MORE leadership activities 
 

Chi-Guhn Lee, Director 

Chi-Guhn has leveraged the all-virtual environment to give invited talks and seminars at many 
conferences around the world. While the detailed list of talks is reserved for the Activities section 
of the report, one initiative of note is spearheading the resource extraction working group. This 
group met three times throughout the first part of 2021 to discuss ways C-MORE could better 
meet the needs of the mining sector. Outside of this particular sector, Chi-Guhn is increasing the 
presence of C-MORE in the asset management and maintenance optimization. On June 17, Chi-
Guhn will be hosting a workshop through the PEMAC GTA chapter, titled “Demystifying machine 
learning – hands on workshop using Excel.” In this term, we submitted three project proposals, 
and signed one project contract: The Canadian Institute for Advanced Research (CIFAR) Solution 
Network Proposal on Digital Supply Chain for Food Products in collaboration with IIT-Mumbai, 
Gates Foundation Proposal on Digital Farming in collaboration with IIT-Mumbai, LG Chemistry 
Proposal on Degradation Model, and a contract with Titan Technologies for a LiDAR data 
compensation model. 

Janet Lam, Assistant Director  

Janet has been working with graduate and undergraduate students to push on with various 

industry-sponsored research projects. In particular, she worked with CEA on a data audit project, 

Capital Power on a criticality project, Kinross on a machine learning case studies project, Titan 

Technologies on two different wind-turbine projects. She also served as the lead writer in several 

grant proposals, including Gates Foundation Grand Challenges and LG Chem. 

She met virtually with several potential collaborators to discuss ways to combine forces, as well 

as renewed contact with current members to keep projects fresh. 

In other work, she taught three undergraduate courses in Reliability and Maintainability, 

Operations Research, and Engineering Strategies. 

Andrew K. S. Jardine, Professor Emeritus 

Andrew has been active throughout the first half of 2021, serving on various committees as a 
reviewer, board member and more. He was a reviewer for papers submitted to the 15th World 
Congress on Engineering Asset Management (15th WCEAM), hosted online, but based out of 
Bonito Brazil in August 15-18. He is serving on the advisory board of Mechanical Systems and 
Signal Processing (MSSP) as an appointed member as of 2021. On February 8, Andrew was invited 
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as a member of the editorial board for the Journal of Maintenance, Reliability and Condition 
Monitoring (jMARC), a new open access journal with Professor Jyoti K. Sinha from the University 
of Manchester as Editor in Chief. Through March 6, 7, 27 and 28, he taught a graduate class in 
Maintenance Analysis and Optimization, at the University of the West Indies in Trinidad. In April , 
he submitted the manuscript for the 3rd Edition of Maintenance, Replacement and Reliability: 
Theory and Application to CRC Press. The official publication date is 2022. The University of 
Wester Australia appointed Andrew as an assessor for promotion of an academic to the rank of 
Professor, Level E in April. For the upcoming 11th IMA International Conference on Modelling in 
Industrial Maintenance and Reliability (MIMAR) taking place June 29 – July 1, he is a member 
of the programme committee, and on the board of examiners to assess the PhD thesis titled 
Development of Strategies for Effective Maintenance of Induction Motors, Indian Institute of 
Technology (IIT) Kharagpur on May 10, 2021. He continues his work on the PEMAC awards 
committee, with meetings on April 16 and 27th. 

Dragan Banjevic, C-MORE Consultant 

Dragan continued to collaborate with C-MORE on projects with consortium members, mostly 
with Kinross Gold, TTC, and MOD.  He is currently busy with implementation of MOD Spares 
management project. He also provided help in other projects with C-MORE students, as well as 
in their research. 

Sharareh Taghipour, Ryerson University, External Collaborator 

From January to June 2021, Sharareh lectured one session about the role of emerging 

technologies in physical asset management (University of West Indies, graduate course, with Prof. 

Andrew Jardine). She is working on a project entitled “Decentralized data analytics and 

optimization methods for Physical Asset Management” (NSERC Discovery grant), as well as two 

collaborative projects with industry: “Real-time optimization of production scheduling” and 

"Developing a decision support tool to optimize manufacturing for productivity and safeguarding 

the workforce against COVID-19", both with Axiom Group (NSERC Alliance). In addition, she is 

using the “Industry 4.0 Smart Factory System” to develop predictive maintenance models and 

real-time optimization of production scheduling (funding from the Ministry of Economic 

Development, Job Creation and Trade and John R. Evans Leaders Fund). She recently finished 

her collaborative project entitled “Developing methods for measuring social, economic, and 

environmental impacts of maintenance activities for physical assets,” with Fiix Inc. (NSERC CRD). 

Dr. Taghipour also submitted a book chapter entitled "The role of emerging technologies in 

physical asset management" for the third edition of the book "Maintenance, Replacement and 

Reliability" by Andew Jardine and Albert Tsang. Sharareh also presented "The Role of emerging 

technologies in physical asset management" at the 15th International Physical Asset Management 

Conference. Online, March 9 and 10, 2021, Tehran, Iran 

Scott Sanner, University of Toronto 

Scott's group continues work on a range of applied projects covering predictive modelling for 

residential HVAC (journal article published in Journal of Building Performance Simulation), 

and text analytics for urban studies (journal article published in Cities).  Scott's group also 

continues fundamental AI research on the topic of continual learning for deep learning (with 

one conference paper published at AAAI-21) as well as conversational recommender systems 

(with a conference paper published at WWW-21). 

Fae Azhari, University of Toronto 



12 
 

Fae’s research group now consists of 5 doctoral students, 4 MASc students, and 4 undergraduate 
students. Her projects include: complex naval asset management using sensor data, optimizing 
the fabrication and performance of multifunctional cementitious composites, fibre optic sensors 
for vibration monitoring, sensing systems for prostheses and gait analysis, bridge scour 
monitoring, condition-based maintenance of bridges, and swimming pool freshwater usage 
optimization. Her group members submitted a number of journal articles and presented at virtual 
conferences this past year. Fae has initiated a number of new collaborations with colleagues in 
psychology, physiotherapy, medicine and electrical, chemical and biomedical  

Jue Wang, Affiliate Professor 

Jue Wang is an Assistant Professor at Smith School of Business Queen’s University. He is 
currently supervising/co-supervising two PhD students on sequential decision making. He also 
started working on a new project on optimal learning and optimization when the system can stop 
due to random failure. He and his collaborator discuss several times a week online for this project. 

Ali Zuashkiani, Director of Educational Programs 

Ali has been active in providing consulting services to various industries such as oil and gas, power 

generation and distribution, mining, and petrochemical. He has been in particular active in 

working with several companies including JESCO steel company in Saudi Arabia and DP World 

in Dubai to improve their spare parts management practice and with SABIC on the topic of RCM. 

He has been also working with Aramco in Saudi to train their engineers to get CMRP designation. 

Ali has been also active with Institute of Asset Management on developing a Subject Specific 

Guideline (SSG) on Management of Change and is working with General Forum on Maintenance 

and Asset Management (GFMAM) on the third edition of Asset Management Landscape. Ali has 

started working with Society for Maintenance and Reliability Professionals (SMRP) to represent 

them at GFMAM meetings and to work on new body of knowledge of SMRP. 

Majority of training programs were cancelled or conducted online due to COVID-19 however few 

managed to go thorough.  

In Dec 2020, Ali conducted 5-day Physical Asset Management training online to a group of asset 

managers from different industries.  

In April 2021 Ali delivered a 5-day CMRP preparation training program to group of reliability 

engineers from Saudi Aramco oil company. 

Ali has been working with LEORON and PAMCo to deliver more CMORE certified training 

programs including an upcoming 5-day Asset Management 4.0 program that will be delivered 

online during Aug 2021 and a course on Spare Parts Management and Life Cycle Costing 

Management in September 2021. 
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Overall project direction 
Janet Lam, Assistant director 

Goals and retrospectives 
This section highlights the some of the main achievements in C-MORE for the period January 

2021 – June 2021. Throughout the months of the pandemic, the C-MORE team continued to 

operate with work-from-home modifications, with all meetings happening virtually. 

As with many other organizations, we attended our first virtual conferences, including hosting 

our own progress meetings online. Our PAM2 course is scheduled for late June of 2021; it is 

being planned for virtual delivery. 

We continue to seek opportunities to leverage our work with external funding. Some proposals 

submitted include LG Chem Global Innovation Contest, Gates Foundation Grand Challenges for 

Smart Farming, and Canadian Institute for Advanced Research AI governance solutions. 

Beyond our continuous work with consortium members, we have engaged with other industry 

partners on an ad-hoc basis, including Canadian Electricity Association and Capital Power. 

Projects from both of these partners will be presented today. 

Activities 

Collaboration with companies and site visits 

This section gives details on progress in research conducted with consortium members 

Member Collaborations 

Defence Science and 
Technology Laboratory 

The aircraft carrier spares optimization project continued under 
Dragan’s supervision with M.Eng. student Varun C. Ananda Rao. 
They are developing a software tool to optimally stock spare parts. 
This project will be presented today. 

A second project in interpreting and fusing data from disparate 
environmental conditions began during this time with Siddharth 
Patel, an M.Eng student. This work is in its early stages. 
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Member Collaborations 

Department of National 
Defence 

C-MORE wrapped up the propulsion diesel engine project with 
recommendations on data collection, and the implications of the oil 
analysis results. 

Kinross We continued work on the machine learning business case project 
with Zoha Sherkat-Masoumi and Theresa Taylor leading the 
project. The interim objective is to predict the remaining useful life 
of the haul truck engines using sensor data. The current status of 
this project will be presented today. 

Toronto Transit 
Commission 

TTC set a distinct timeline of interest for the linetest and re-
inspection projects for decision making. The updated results of 
these projects will be presented today. 

 

Theoretical work 
This section on theoretical work is oriented toward students’ and postdoctoral fellows’ research 

topics. 

Name Activity 

Tushar Aggarwal, 
M.Eng. student 

Tushar is currently in his first year of M.Eng in Mechanical 
Engineering program focused towards artificial intelligence and 
robotics. He completed his project on anomaly detection on train 
tracks using thermal imaging. 

Varun C Ananda Rao, 
M.Eng. student 

Varun is a first year MEng student in the Mechanical and Industrial 
engineering program focused on supply chain management and 
optimisation. He is working on carrier optimisation project 
focusing on building a model that provides an optimised solution 
for maintaining inventory on the carrier. His work is focused on the 
implementation of the optimisation model and thereby creating an 
interface for users to easily obtain the solution. 

Kuilin Chen, Ph.D. 
candidate 

Kuilin is a third-year Ph.D. student. His current research interest is 
few-shot learning. One paper on incremental few-shot learning is 
published in ICLR 2021. He submitted a paper on few-shot learning 
with stochastic weight averaging to NeurIPS 2021. 

Ozkan Elmali, M.ASc. 
student 

Ozkan is a new M.ASc student working on a reinforcement learning 
approach to the vehicle routing and safe routing problem. As 
vehicle routing is known to be a computationally hard problem, 
there is great potential in taking a RL approach. Safe routing is a 
special case of vehicle routing for transporting hazardous materials 
that have additional restrictions and a heavier weight to reducing 
crash risks. As a newly registered student, he is currently taking 
several courses. 

Michael Gimelfarb, 
Ph.D. candidate 

Michael has continued his doctoral work on knowledge transfer in 
reinforcement learning and has been a postgraduate affiliate of the 
Vector Institute since April 2020. Currently, his research focuses on 
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Name Activity 

transferring skills robustly and safely in a risk-aware setting. His 
current work leverages robust and risk sensitive MDPs, 
representation learning and planning under uncertainty. He 
published three papers since 2020 and is currently preparing two 
papers for submission to the NeurIPS Conference in 2021 

Scott Koshman, Ph.D. 
student 

Scott continues his research on equipment health monitoring 
(EHM) for Halifax Class Frigates, under the supervision of 
Professor Fae Azhari. His recent focus has been data conditioning, 
the optimum application of parallel assets to the analysis of largish 
data sets (40+ billion transactions), and the fusion of data across 
databases. He works with data from diverse sources including EHM 
systems, an ERP, internal reporting, and external public 
environmental data. This research will inform approaches for the 
development of maintenance optimization models given certain 
types of imperfect data inputs. Scott is a senior member of 
American Society of Quality and recently recertified both his 
Certified Reliability Engineer and Certified Manager of Quality / 
Organizational Excellence credentials. As a member of the 
International Council of Systems Engineering (INCOSE), he 
recently participated in the 1st Virtual INCOSE International 
Workshop (IW2021). In his workplace, he has also been the lead for 
the development of graduate courses and the transition to a virtual 
delivery model in the subject area of global strategic security 
studies.   

Sahil Nagpal, M.Eng. 
student 

Sahil Nagpal is a part-time M.Eng student, who is currently working 
at Magna International. The main goal of his project is to implement 
a Predictive Maintenance protocol for critical components of a 
manufacturing equipment which is currently operating at one of 
Magna's Manufacturing facilities. Sahil is looking to utilize Weibull 
analysis, as well as investigating the use of Cox Proportional Hazard 
Models with various sensor readings as predictors for the remaining 
useful life of the components. The project has been assigned by 
Magna International. 

Seyedvahid Najafi, 
Ph.D. student 

Vahid is a full-time Ph.D. student and works on the maintenance 
modeling and optimization of multi-unit series systems. In his 
recent paper, which is under review by the Reliability Engineering 
and Safety Systems journal, an opportunistic maintenance policy 
with general repair is developed for a two-unit series system, in 
which the condition of one unit is monitored, and only age 
information is available for the other unit. The problem is 
formulated in the semi-Markov decision process framework, and an 
algorithm is developed to find the optimal policy that minimizes the 
long-run average cost per unit time.  
A paper entitled “A condition-based maintenance policy for a two-
unit system subject to dependent soft and hard failures: A 
reinforcement learning approach” has been accepted by the 11th 
IMA International Conference on Modelling in Industrial 
Maintenance and Reliability (MIMAR). 
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Name Activity 

His research is now focused on developing condition-based 
maintenance policies for multi-unit systems, where all units are 
subject to condition monitoring, using deep reinforcement 
learning. 

Jeong Cheol Seok, 
M.Eng. student 

Jeong Cheol Seok is a 2nd year MEng student in Mechanical and 
Industrial program with emphasis in data analytics. He is currently 
working on project to develop a deep learning model that predicts 
the remaining useful life (RUL) of engines used in a mining site. He 
has been exploring neural networks such as CNN – LSTM, and 
GRU for prediction of the RUL. He is working on another project to 
develop a machine learning model that measures for the actual 
wind parameters such as speed and direction respect to ground 
using the measurement of a LiDAR measurement floating on sea 
surface. The preliminary model has been completed and is waiting 
for the further instructions from the requested company.  

Pooyan Sharifi, M.Eng. 
student 

Pooyan is a second year M.Eng student in the Mechanical and 
Industrial Engineering. His project is focused on asset management 
and criticality analysis for a medium sized power generation 
company in the GTA. Pooyan completed his undergraduate degree 
at the University of Waterloo in Chemical Engineering with a 
specialization in Process Modelling, Optimization and Control. He 
also has over two years of experience working full-time in the 
power generation industry as well as experience working in other 
industries including automotive manufacturing and the defence 
industry. He is excited to utilize his blend of academic and 
industrial experience to tackle his M. Eng project. 

Zoha Sherkat Masoumi 
M.Eng. student 

Zoha is a second year Meng student in Mechanical and Industrial 
Engineering. Her area of specialty is optimization and data 
analytics. She is currently working on sensor-based maintenance 
for Kinross Gold Corporation. She is aiming to predict engine 
failures for trucks in real mine operating environment with the help 
of sensor readings. She is implementing deep learning algorithm 
that predicts failures 3 hours before it occurs.  Her goal is to reduce 
the number of unscheduled truck failures to reduce downtime and 
save money.  

Jahyun Shin, M.Eng. 
student 

Jahyun is a first year M.Eng student in Mechanical and Industrial 
Engineering program with emphasis in analytics and machine 
learning. Under Professor Chi-Guhn Lee, she is taking charge of an 
early-stage deep learning research project to develop a model that 
can automatically detect and classify restricted items for an 
airport’s X-ray baggage scanner. She is also applying adversarial 
domain adaptation techniques to compensate for the small number 
of labeled X-ray images provided by the stakeholder 

Avi Sokol, Ph.D. 
student 

A flex-time PhD student and a full-time Business Data Scientist and 
Inventory Specialist, Avi is researching the integration of 
Reinforcement Learning and Inventory Control to reduce waste in 
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Name Activity 

supply chains. Recently Avi has passed his first qualifying exam and 
currently working towards developing a novel algorithm with 
discrete-continuous action space and reward decomposition. 

Kimia Taghvaei Ganjali, 
IndE thesis student 

Kimia graduated this year, and is now working as a logistics 
continuous improvement analyst at Walmart. She completed the 
CEA data audit project as her thesis. The objective of the project 
was to build a framework for CEA to help assess their records and 
build a consistency throughout all sites working with CEA. 

Sophie Tian, M.ASc. 
student 

Sophie started her M.ASc. in September 2020. She has been taking 
the courses Neural Networks and Deep Learning and the Scientific 
Writing Course during the last few months. She is working on the 
combustion signature analysis project in collaboration with NRC 
and has been conducting literature review on time series 
classification methods. 

Katie Xu, M.ASc. 
student 

Katie started her M.ASc. in September 2020. She has been working 
with collaborators in the Department of Materials Science and 
Engineering on the use of machine learning techniques for in-situ 
process monitoring and control in 3D printing systems. To this end, 
she has been studying computer vision and establishing 
requirements for the physical system. Additionally, she took two 
courses during the previous semester: Neural Networks and Deep 
Learning, and Markov Decision Processes. 

Songci Xu, Ph.D. 
student 

Songci has started his first year Ph.D. program since the January of 
2020. His current research focuses on applying transfer learning 
onto Intelligent Fault Diagnosis (IFD), which is also one of the 
projects of LG Sciencepark. He is also working on the explanatory 
ability of deep domain adaptation via Optimal Transport Theory, 
which counts towards his thesis. 

Zihan Zhang, M.ASc. 
student 

During the past 6 months, Zihan has finished 2 courses (Markov 
Decision Process, Scientific Writing Course), continued literature 
review in PHM application and proposed four project proposals: (a) 
Hierarchical maintenance optimization considering replacement 
impact; (b) Short-time-Fourier-transform-based fault diagnosis 
using Graph Convolution Network; (c) Health-oriented group 
maintenance; and (d) Prognosis management for rechargeable 
batteries integrating deep neural network and physical-stochastic 
processes. She will proceed battery project in summer session with 
undergraduates. 
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Visits and interactions with consortium members 

and others 
December 2020 – June 2021 

All meetings during this period were virtual, in accordance with safe COVID-19 protocols. 

December, 2020  

Ali conducted a 5-day Physical Asset Management training online to a group of asset managers 

from different industries. 

Biweekly throughout Kinross 

Zoha Sherkat-Masoumi, Seyedvahid Najafi and Janet met with Theresa Taylor of Kinross on a bi-

weekly basis throughout, to discuss progress on the machine learning case studies project. This 

project will be presented today. 

January 7, 2021 Eaigle 

Fae Azhari met with Amir Hoss of Eaigle on the use of sensors and AI for swimming pool 

freshwater usage optimization. 

January 8, 2021  

Fae attended a meeting of the Transportation Research Board AKT40 committee on Structures 

Maintenance. 

January 21, 2021 CEA  

Janet and Kimia met with Dan Gent and Asuka Boehm of CEA to discuss progress on the data 

audit project, and plans for the upcoming term. 

January 26, 2021 Kroon 

Chi-Guhn, Janet, and Dragan met with Michael Kroon, Huthaifa Abderahman, and Jeff Gaudreau 

of Kroon to discuss potential collaboration opportunities. 

January 27, 2021  

Chi-Guhn, gave an invited talk titled “MDP and Reinforcement Learning” to undergraduate 

students in the Machine Intelligence Option of the Engineering Science Class 

February 1, 2021 Capital Power 

Janet met with Bill Mercer of Capital Power to discuss the administrative details of the criticality 

project. 
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February 1, 2021  

Chi-Guhn and Katie Xu met with Professor Yu Zou and Jiahui Zhang to discuss their project 

direction and data requirements. Katie presented some basics of reinforcement learning. 

February 3, 2021 Xtivity 

Janet met with Kevin Gates and Andrew Jordan of Xtivity to share knowledge and explore 

collaboration opportunities. 

February 8, 2021 TTC 

Janet and Dragan met with Tim Southworth, Tauqeer Qurashi, Mo Ghaus, Jennifer Lu, Hossein 

Mohammadian, Ali Rezaie, and Rezwan Razzaque to report on progress of the re-inspection 

project and to discuss changes to the interpretation of the dataset. 

February 8, 2021 jMARC 

Andrew was invited to the Editorial board for a new open access journal – Journal of Maintenance, 

Reliability and Condition Monitoring (jMARC), with editor in Chief Professor Jyoti K. Sinha, The 

University of Manchester, UK 

February 16, 2021 DND 

Janet met Abaida Al-Azzawi and Dan Saulnier of DND to discuss results of the propulsion diesel 

engine CBM project, and recommend next steps. 

February 16, 2021 AI2HR 

Janet met with Richard Beer and Michael Rosenberg to consult on companies that provide AI 

implementation services in the context of human resource management. 

February 17, 2021 Jun-Ju University 

Chi-Guhn gave a seminar titled “Machine Learning: Challenges and Our Efforts to Overcome” to 

researchers at Jun-Ju University in South Korea. 

February 18, 2021 CEA 

Janet and Kimia met with Dan and Asuka of CEA for a monthly project update. An idea to compare 

states 24 and 25 of each plant was considered. 

February 18, 2021 Concordia University 

Chi-Guhn gave an invited talk titled “Reinforcement Learning on Financial Optimization” to 

graduate students and researchers at Concordia University. 

Feburary 25, 2021 STNG 

Chi-Guhn, Janet, Dragan and Jeong-Cheol Seok met with Pedro Cancino and Daniel Diaz from 

Asesorías y Servicios Tribológicos del Norte Grande S.A to discuss a mining haul truck predictive 

analytics project. 

March 1, 2021 Capital Power 

Janet and Pooyan Sharifi met with Bill Mercer, Robert Mozzoni, Adrian Martinez, Iain Ogilvie, 

Juri Baroskov, Brent Tarnowski and Terry Myers to kick off the Goreway plant criticality project. 

It was decided to start with the boiler feed pumps as the first equipment of interest. 

March 3, 2021 Titan 

Chi-Guhn, Janet, Dragan and Jeong-Cheol met with Joe Xu, Yinxing Ma, Luffy Zhou and Qiang 

Zhao of Titan to discuss the buoy-base LiDAR compensation project. The objective of the meeting 

was for data description and project kick-off. 
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March 6, 7, 27, 28, 2021 UWI 

Andrew taught a graduate class titled Maintenance Analysis and Optimization, at The University 

of the West Indies, Trinidad. 

 

March 9, 10, 2021 IPAMC 

Sharareh also presented "The Role of emerging technologies in physical asset management" at the 

15th International Physical Asset Management Conference. 

March 12, 2021  

Katie met with Jiahui to receive training on how to use the 3D printer for her research project. 

March 18, 2021 CEA 

Janet and Kimia met with Asuka to share the results of the data audit project. The final 

deliverables were agreed upon. The results of this project will be presented in today’s meeting. 

March 30, 2021 DND 

Chi-Guhn and Janet met with Dan to wrap up the propulsion diesel engine project. A summary of 

the whole project was provided, along with a final report and recommendations. 

Weekly starting from March 31, 2021 Capital Power 

Janet and Pooyan, met with Bill, Robert, Adrian and Iain to report weekly on the progress of the 

criticality project. The current status of the project will be presented today. 

March 26; April 23; May 28  

The resource extraction special group, (Chi-Guhn, Janet, Dragan, Emilio Sarno, Jean-Pierre 

Pascoli, Alberto Van Oordt, Joe Ashun, Simone Smith, Marcelo Aliendre) met for the first time to 

discuss potential ways C-MORE can better serve the resource extraction industry. A main gap of 

knowledge and language between practioners, managers and researchers was identified. 

April, 2021  

Ali delivered a 5-day CMRP preparation training program to group of reliability engineers from 

Saudi Aramco oil company. 

Andrew was appointed Assessor by University of Western Australia for promotion of an academic 

to the rank of Professor, Level E. 

April 5, 2021  

Andrew submitted to the publisher the manuscript for the 3rd Edition of Maintenance, 

Replacement and Reliability: Theory and Applications, CRC Press. 

April 16, 27, 2021 PEMAC 

Andrew met with the PEMAC awards committee as a member. 

April 27, 2021 TTC 

Chi-Guhn and Janet met Mo Ghaus from TTC to discuss ways that C-MORE could serve more 

departments of TTC. C-MORE committed to delivering a presentation that proposed potential 

projects with TTC. 

April 28, 2021 Intellistruct 

Fae met with Brian Westcott of Intellistruct on structural health monitoring for resilient and 

smart bridges. 

April 29, 2021 Titan 
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Chi-Guhn met with Joe to discuss the objectives of the wind turbine AI-algorithm development 

project. 

May 3-7, 2021  

Kuilin Chen gave a presentation titled “incremental few-shot learning via vector quantization in 

deep embedded space” at The Ninth International Conference on Learning Representations, 2021. 

May 10, 2021 IIT 

Andrew was a member on the Board of Examiners to examine PhD thesis titled Development of 

Strategies for Effective Maintenance of Induction Motors, Indian Institute of Technology (IIT) 

Kharagpur. 

May 24, 2021 IISE 

Mike Gimelfarb gave an invited talk titled “\epsilon-BMC: A Bayesian Ensemble Approach to 

Epsilon-greedy Exploration in Model-free Reinforcement Learning” at the Annual Conference 

and Expo 2021 hosted by the Institute of Industrial and Systems Engineers. 

May 26, 2021 CSCE 

Fae attended a meeting with The Canadian Society for Civil Engineering (CSCE) Structures 

Division. 

June 3, 2021 Titan 

Janet, Shelina Terrance and Sylvia Chen met with Joe, Yinxing and Qiang of Titan to discuss 

details on the data for the wind turbine AI-algorithm development project. 

June 7-10, 2021 CORS 

The following presentations were given at the Canadian Operational Research Society (CORS) 

annual meeting 2021. 

Kuilin gave a presentation titled “Attentive gaussian processes for probabilistic time-series 

generation”. 

Mike Gimelfarb gave a presentation titled “Improving the Sample Efficiency of Model-free 

Reinforcement Learning using Bayesian Mixtures of Experts”, co-authored with Chi-Guhn. 

Amine Aboussalah gave a presentation titled “Symmetry Augmentation for Time-series 

Reinforcement Learning”, co-authored with Chi-Guhn. 

Babatunde Giwa gave a presentation titled “High Dimensional Continuous Reinforcement 

Learning for Finance”, co-authored with Chi-Guhn. 

Wentao Liu gave a presentation titled “Risk-sensitive Portfolio Investment Strategy Selection with 

Distributional Reinforcement Learning”, co-authored with Chi-Guhn. 
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Kinross: A business case for machine learning 

methods 
Zoha Sherkat Masoumi 

Introduction 
Kinross Gold corporation is a gold mining company. Gold from the mines are carried with trucks 

from mines to facilities and distribution centers. Trucks are expensive assets at the same time, 

they often fail and cause excessive downtime and cost. As a result, the company aims to detect 

failures before they occur with the help of sensors. In this project sensor recordings from 2019 

are utilize to train machine learning algorithm to predict failures that are expected to take place 

in 3 hours. 

Data Preprocessing 

Data 

The data from the project is provided by Kinross Gold Corporation. The sensor recordings and 

unscheduled failure information is available on two different tables for 13 mining trucks for the 

year of 2019. There are total of 33 sensors however, only 25 of them have enough recordings to 

be considered for future analysis. At determined time intervals all 25 sensors have recorded 

information for each truck. There are no recordings during maintenance or when the truck is at 

rest. There are between 18,000 to 38,000 sensor recordings for each truck. 

Remaining Useful Life (RUL) 

The unscheduled failure table has been utilized to calculate the hours remaining to the next 

failure (Remaining Useful Life (RUL)) for each sensor recording. The overall RUL and RUL 

obtained for each failure mode for each recording is added as separate columns to sensor 

information table.  Figure 1 displays the RUL for each sensor recording. There are some long 

and some short failure cycles. "DT79" has the longest cycle without failure (867.43 hours). 
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Table 1 Formatted sensor recordings table for "DT49" 

 

 

Figure 1 RUL vs. sensor recording for "DT68" and "DT69" 

Failure Frequency and Duration 

Unscheduled failure table includes eight failure modes: Dispatch hardware, Electrical, Engine, 

Hydraulics, Lubes/Oil , Operator damage, Structure, and Tire repair. In figure 2 displays 

jackknife scatter plot. y-axis of this figure represents the frequency of failure per truck and x-

axis is the average downtime per truck in 2019. The horizontal and vertical red lines are the 

average failure frequency and average downtime. With the help of the red lines failures are 

divided into four different categories: chronic and acute, chronic, acute and neither chronic nor 

acute. Structure (frequency= 39.5, average downtime= 12.3 hours) and Engine (frequency= 

33.5 , average downtime=11.7 hours ) are both acute and chronic.  Failures with high frequency 

and low average downtime are chronic and not acute such as Hydraulics (frequency= 34, 

average downtime= 2.4 hours)  and Electrical (frequency= 33.5 , average downtime=3.0 hours ). 
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The remaining failure modes are neither acute nor chronic. The investigation on duration and 

frequency failures confirms the following results: 

• On average the number of daily shutdowns per vehicle is 0.48. Thus, unscheduled 
failures on average occur every other day. 

• On average the duration of daily shutdowns due to unscheduled failure per vehicle is 3.3 

hours 

• On average for each unscheduled failure the duration of shutdowns per vehicle is 3.8 

hours 

 

Figure 2 Jackknife diagram for "DT82" and "DT86" 

Engine Failure 

Based on our discussion with Kinross Gold Corporation representative the company is 

interested in Engine failure mode thus, for future analysis we our considering engine failures 

only. "DT66" has the largest number of unscheduled engine failures (46). However, for most of 

the trucks the number of engine failures is less than 20. The small number of engine failures 

cause severe imbalance in the dataset and increases the difficulty of this project. Figure 3 

displays the number of engine failures for each truck during 2019. In addition, failure patterns 

are different for each truck, some of them did not fail in the first 6 months of the year and others 

failed evenly throughout the year. Thus, the suggested ML algorithms must be able to detect 

failures in the test set that has different failure pattern compared to the train set. 
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Figure 3 Number of engine failures for each truck in 2019 

 

Figure 4 Sample RUL for engine failure 

Data transformation 

The following three data transformation methods are applied to the original table: 

Firstly, In the original data the time intervals between sensor recordings are not equal which 

misleads ML algorithms. Many recordings that are very close to each other (5 minutes) will 

document similar results with low variance for many sensors. As a result, by interpolation 

method the time intervals between failures fixed to 30 minutes. Secondly, for each sensor, the 
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difference between two consecutive recordings is added as a separate column to the dataset. 

Lastly, In order to transform my skewed dataset to approximately normal, log transformation 

have been utilized. 

Algorithm 

Model preparation 

For each truck the input to the algorithm is the recordings for 25 different sensors for 2019.  The 

predicted output is a binary variable which is equal to 0 if there are less than 3 hours to the next 

failure and 1 otherwise. This binary output is confirmed with Kinross Gold representatives due 

to the following reasons: 

• Company's main interest is to detect failures within 3 hours so that there are enough 

time available to replace the truck with new one and send the current truck for 

maintenance.  

• Sensors are used to detect failures and they are expected to display normal recordings 

when the time remaining to the failure is more than 3 hours. Thus, the RUL which is the 

exact time remaining to the failure can not be predicted by sensor recordings with high 

precision.  

• Binary classifiers are easier, faster to train and their results outperforms the prediction 

models for this case study 

The aim of our model is to utilize sensor recordings in order to predict the upcoming failure 

closed to a pre-specified threshold (3 hours).   

Performance matrix 

Accuracy is the proportion of correctly predicted recordings to the total number of prediction  

and its equation is as follows: 

 

Accuracy is the most common matrix used to evaluate the performance of the model. However, 

it is misleading when it comes to imbalanced data. Because, in case of imbalanced data many 

machine learning algorithms predict the majority class and this will result in good accuracy 

matrix even though non of the minority class was predicted correctly. Thus, we will focus on 

precision and recall for our model.   

Precision indicates which proportion of the recordings that are predicted to be more than 3 

hours to the failure were actually correct and its equation is as follows: 

 

Recall indicates what proportion of the recordings that are more than 3 hours to the failure were 

actually correctly identified and its equation is as follows: 

 

Sensor recordings for each truck is randomly split in training and test set such that 80% of the 

recordings are assigned to train set and 20% to test set. In addition, each truck is trained on the 
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recordings from other trucks. Moreover, since the objective is to correctly identify failures, four 

trucks without any failures in their test set have been excluded from analysis. For evaluation two 

consecutive sensor recordings will identify failure. 

Results 
As noted before the dataset is highly imbalanced and on average only 0.3% of the recordings are 

failure samples. To deal with imbalance Borderline SMOTE is applied to the train set. With this 

method only the samples near the borders are oversampled. By comparing different 

classification algorithms Naive Bays resulted in higher precision and recall value (table below 

displays the final results). In future, combination of sampling methods and feature engineering 

techniques to improve precision of my algorithm. 

Table 2 Performance results for different machine learning algorithms for "DT82" 
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An update on TTC subway infrastructure 

inspection projects 
Janet Lam 

Introduction and background 
In this report, we provide an update on two projects with the TTC – the linetest inspection 

optimization project and the reinspection optimization project. 

Linetest project 
The TTC non-destructive testing (NDT) team is responsible for inspecting the subway track with 

ultrasound equipment, identifying small defects that may propagate into significant track 

failures. A linetest is an exploratory search from one station to the next, with the objective of 

discovering existing defects. 

The NDT team is resourced to perform a linetest on the entire subway system once per year. 

However, there are certain parts of the track that are more susceptible to developing defects 

than other parts of the track. 

The objective of our project with the TTC was to reallocate the NDT linetest resources to better 

identify defects by focussing on sections of the track that are more prone to defects, and 

borrowing resources from sections of track that are less likely to develop defects. 

Summary of previous work 

The last time we updated this project was in December 2018, where an optimal reallocation that 

takes into consideration the location and geometry of the track. The objective criterion was the 

total expected time between a defect occurring, and then being discovered via a linetest. Since 

some sections of track have fewer defects than others, re-allocating the annual linetests away 

from healthier sections of track and toward more problematic sections of track would reduce the 

unsupervised time of the defects. 

We incorporated the different priorities of defects with different weights, as well as defects that 

occur on straight parts of track vs. mild curves of tight curves of track. 

Extension of work 
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Since several years have passed, TTC requested an updated analysis with data from April 1 2016 

to March 31 2021. All models remained the same, only the data changed. The recommended 

linetest schedule reduces the total expected unsupervised time by 30% over an equally 

distributed linetest schedule. 

The resulting recommended linetest interval is given as follows. The relative frequency column 

indicates how much more often a certain section of the track should be linetested compared to 

the least frequent inspection. For example, the section from Sherbourne to Castlfrank should be 

inspection about 17 times more frequently than the section from St. Clair West to Dupont. 

Line Station Relative 
Inspection 
Frequency 

Annual 
Frequency 

Bloor-Danforth Sherbourne to Castlefrank 16.9 2.5 

Bloor-Danforth Dundas West to Lansdowne 16.5 2.4 

YUS North York Centre to Finch 15.9 2.3 

YUS Union to King 15.4 2.3 

YUS Lawrence to York Mills 14.2 2.1 

Bloor-Danforth Dufferin to Ossington 13.6 2 

Bloor-Danforth Donlands to Greenwood 13.2 1.9 

YUS York Mills to Sheppart 13.2 1.9 

YUS Eglinton to Lawrence 13.1 1.9 

Bloor-Danforth Victoria Park to Warden 13 1.9 

YUS Eglinton West to St. Clair West 12.3 1.8 

Bloor-Danforth Broadview to Chester 11.8 1.7 

Bloor-Danforth Woodbine to Main 11.3 1.7 

Bloor-Danforth Chester to Pape 10.9 1.6 

YUS St. George to Mueseum 10.9 1.6 

YUS Spadina to St. George, Spadina line 10.4 1.5 

YUS Sheppard to North York Centre 10.3 1.5 

YUS Wilson to Yorkdale 9.8 1.5 

Bloor-Danforth Castlefrank to Broadview 9.5 1.4 

YUS Yorkdale to Lawrence West 9.5 1.4 

Bloor-Danforth Bathurst to Spadina 9.1 1.3 

Bloor-Danforth Main to Victoria Park 9.1 1.3 

Bloor-Danforth Old Mill to Jane 9.1 1.3 

YUS St. Claire to Davisville 9 1.3 

Scarborough SRT Scarborough Centre to McCowan 8.9 1.3 

YUS Bloor to Rosedale 8.4 1.2 

Bloor-Danforth Keele to Dundas West 8.4 1.2 

YUS Wellesley to Bloor 8.3 1.2 

Bloor-Danforth Lansdowne to Dufferin 8.1 1.2 

YUS Lawrence West to Glencairn 7.7 1.1 

YUS Downsview to Wilson 7.6 1.1 

YUS St. Andrew to Union 7.6 1.1 
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YUS Davisville to Eglinton 7.6 1.1 

Bloor-Danforth Christie to Bathurst 7.1 1 

YUS College to Wellesley 7 1 

Bloor-Danforth St. George to Bay 6.7 1 

Scarborough SRT Midtown to Scarobourgh Centre 6.7 1 

Bloor-Danforth Pape to Donlands 6.5 1 

YUS Osgoode to St. Andrew 6.5 1 

Bloor-Danforth Greenwood to Coxwell 6.5 1 

YUS King to Dundas 6.5 1 

Bloor-Danforth Coxwell to Woodbine 6.4 0.9 

YUS Finch Tail 6 0.9 

Bloor-Danforth Yonge to Sheppard 5.4 0.8 

Bloor-Danforth Warden to Kennedy 5.3 0.8 

Bloor-Danforth Royal York to Old Mill 5.2 0.8 

Bloor-Danforth Bayview to Yonge 5.2 0.8 

Scarborough SRT Kennedy to Lawrence East 5.1 0.8 

Bloor-Danforth Kipling to Islington 4.8 0.7 

YUS Glencairn to Eglinton West 4.8 0.7 

Bloor-Danforth Spadina to St. George, Bloor line 4.5 0.7 

Bloor-Danforth Islington to Royal York 4.3 0.6 

YUS Rosedale to Summerhill 4.2 0.6 

Bloor-Danforth High Park to Keele 4.1 0.6 

YUS Dupont to Spadina 4 0.6 

YUS St. Patrick to Osgoode 3.9 0.6 

Sheppard Yonge to Bayview 3.9 0.6 

Bloor-Danforth Ossington to Christie 3.8 0.6 

Sheppard Lesle to Don Mills 3.6 0.5 

Scarborough SRT Lawrence East to Ellesmere 3.2 0.5 

Bloor-Danforth Kipling Tail 2.8 0.4 

YUS Dundas to College 2.8 0.4 

YUS Museum to Queens Park 2.4 0.3 

YUS Queens Park to St. Patric 2 0.3 

Bloor-Danforth Runneymede to High Park 1.4 0.2 

YUS St. Claire West to Dupont 1 0.1 

 

This table was constructed using a combined priority-geometry multiplier with the following 

weights. For example, a red defect occurring on a tangent track was given the weight 5*10 = 50, 

and so on. If TTC wishes to revise theses weights according to their subject-matter knowledge, 

we have provided them the tools to do so. 

Geometry Weight  Priority Weight 
Tangent 5  Red 10 
Mild curve 7  Yellow 5 
Tight curve 10  Purple 1 
   Blue 0.5 
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   Brown 0.25 
   Grey 0.125 

 

Conclusion 

We have been advised that the minimal linetest frequency as defined by external regulators is 

once per year. Since that is currently TTC’s testing frequency, we cannot advise less frequent 

inspections on certain parts of track. Instead, for the sections that are listed as having fewer than 

one inspection per year, to perform the minimal linetest as required by the external governing 

body. Then, for the remaining sections, to prioritize based on the list given above. 

Reinspection project 
Another responsibility of the TTC’s Non-destructive testing (NDT) team is to revisit known 

defects in the subway rail system according to a defined timetable. Depending on the severity, or 

priority of the defect, the schedule may be every 21 days, or annually, or something in between. 

When the defects are revisited, the NDT team notes the updated status, and this process is 

repeated until the defects are resolved. 

However, it has been found that some defects remain open for far beyond the originally 

scheduled resolution date, requiring the NDT team to repeated re-inspect the same defect until 

it is finally resolved. This may result in some defects being revisited as many as 57 times, 

consuming the NDT team’s valuable resources. 

The objective of this project with the TTC was to explore the consequences of less frequent 

reinspection, validated with their own data. 

Summary of previous work 

In the previous report, we discussed the model of transitioning from one priority to the next 

within a given re-inspection period. The results can be seen in the Table 3. 

The key takeaways from the previous work is that based on the average number of defects 

carried each year, a slight increase in the inspection interval can save a significant number of 

inspections each year. The resulting decrease in reliability is relatively very small. For example, 

by changing the purple re-inspection interval from 17.4 days to 40 days increases the risk of 

missing a transition from 0.5% to 1.2%, and yields a saving of 57% in inspection efforts. 

In order to focus and update the results, TTC requested that only data from April 1 2016 to 

March 31 2021 was used. 



32 
 

Table 3 Summary results on transition probabilities 
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Purple 17.4 0.995 21 
 

129 
 

21 0.994 17.4 17 
 

464 

40 0.989 9 57 
 

1548 

60 0.984 6.1 71 
 

1922 

Blue 36.42 0.991 10 
 

33 
 

45 0.989 8.1 19 
 

62.7 

60 0.985 6.1 39 
 

129 

80 0.981 4.6 54 
 

178 

Extension of work 

With the new dataset, we have the benefit of a model that is already built, but the renewed costs 

of data cleansing. Resultantly, our most recent efforts have been focussed on preparing and 

cleansing the new dataset to work seamlessly with the existing dataset. 

With the new data stitched up to the existing data, we were able to perform the analysis again, 

and also observe any changes over the years. 

Results 

The results of the analysis are as follows. 

Transition rate for purple and blue defects: 

Priority Transition 
rate 

Purple 0.00034 
Blue 0.0013 

 

Using these transition rates, we were able to illustrate the possibilities with longer reinspection 

periods. The first reinspection interval under each priority is the current interval.  
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Purple 17.4 0.994 0.6 21 
 

21 0.993 0.7 17.4 17 

40 0.986 1.4 9 57 

60 0.98 2 6.1 71 

Blue 36.42 0.954 4.6 10 
 

45 0.943 5.7 8.1 19 

60 0.925 7.5 6.1 39 

80 0.901 9.9 4.6 54 

 

The key information is the column labelled “transitions per 100 inspections.” This column 

indicates the expected number of transitions that occur every 100 inspections. For example, at 

the current inspection interval of 17.4 days, after 100 inspections at that interval (4.8 years), we 

can expect to discover 0.6 transitions from purple to a higher priority. 

Then, we can compare this baseline to a less-frequent inspection interval. For example, if the 

inspection interval was every 60 days, then after 100 inspections at that interval (16.4 years), we 

can expect to discover 2 transitions from purple to a higher priority. By increasing the inspection 

interval, we’re permitting 1.4 additional transitions to occur. Though this may sound alarming, 

note that practically speaking, this means that at the reduced inspection rate, 1.4 additional 

transition will occur every 12 years, with an accompanied saving of 71% in reinspection 

resources. 

We can extend our interpretation with the remainder of the results as needed. 
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CEA Data Audit Project 
Kimia Taghvaei Ganjali 

Introduction  
Canadian Electricity Association (CEA) is a national leading electricity association in Canada 

representing many electricity companies. CEA was founded in 1891 and consists of senior 

executives from its Corporate Utility Members. CEA provides value added projects and services 

to improve the safety, security, and sustainability of the Canadian electricity industry. These 

strategic projects are research outputs to improve the performance of utility members. 

Every electricity company under CEA wings uses the guidelines provided by CEA to 

record their equipment operating and outage data along with timestamps. Every system 

can have different failure modes, hence different types of outages for power plants. The 

process in which these outages are reported impacts the validity of the reliability 

measures. A framework is needed to ensure the quality of reported data is not as 

dependent on organizational and behavioral factors. 

The objective of this research thesis is to generate a framework for CEA and their utility 

members. This framework will help assess their maintenance records and build a 

consistency throughout all sites working with CEA. To assess the consistency of different 

CEA sites, the primary question for this research is whether different utility plants are 

coding their events correctly. Large data sets of all 229 CEA sites have been audited and 

analyzed to generate a model and perform statistical analysis. Results of the analysis 

were then compared to see if there are any similarities between the sites or if there are 

significant differences. 

Methodology 
The project was broken down to four phases: business understanding, data 

understanding, modelling, and evaluation. Each phase will be explained in this section 

as well as a summary of results. 

Business understanding 
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In the early stages of the project, the focus was more on understanding the terminologies used 

by CEA and the guidelines they had for the sites. CEA manuals and reports were studied to 

acquire a greater background for the project. The important business terms for this project are 

listed below: 

State code: the state reported for the unit as per the manual 

 Available states: 11, 12, ..16 

Outage codes (unavailable states): 21, 22, …25 

Only reporting changes in states (i.e. no consecutive state 11’s) 

The most important states for this study are 24 (maintenance outage) and 25 (planned 

outage) 

Duration: duration of outage in hours 

Capacity: capacity of the unit 

Have eight capacity groups and units should be classed based on their group 

Data Understanding 

Once the objectives and CEA terms were understood, the project moved into a data analysis 

stage. The meaning behind certain attributes and conditions under which some entries were 

recorded was discussed with CEA to understand what is required for the analysis. A database 

was created to merge the large data files from different plants along with other reference tables 

needed for the analysis. The final dataset was then investigated to identify issues. Issues such as 

null values, duplicate entries, wrong data types were resolved. The result of the data prep stage 

was a clean dataset that was then split to create a separate file for every plant. 

Modeling 

In early iterations of the modelling phase, the focus of the model was on the operating codes but 

when discussed with the client, there was a need to further analyze the downtime codes (24, 25) 

and hence the adjustments were made.  

The primary research question was whether plants were coding their events correctly and with 

the focus on state code 24-25, the secondary question was whether these two state codes were 

being applied consistently across the plants. Furthermore, CEA wanted to investigate if there 

were any plants that are not discriminating between these two state codes.  

There are two main models built for this project namely the data model and stats model. The 

data model takes the clean data file for every plant as an input and outputs a list of downtime 

durations for every capacity range. The model looks at the units within each capacity group and 

creates a list of maintenance outage and planned outage durations for that specific capacity 

group. If certain plants do not have units within some capacity groups, the list is empty for those 

ranges. The list is then sorted to create a histogram of all the data points and pass it to the stats 

model. This data model is created to avoid the manual work for different plants. 

The statistical model takes the list of downtime durations for every capacity group and outputs 

the name of best fitted distribution and its parameters. The model performs a statistical fit 

analysis by fitting the empirical distribution to the theoretical ones in the scipy stats package. 

The model compares the fitted distributions by calculating the parameters and error (SSE) and 

picks the one with the lowest discrepancy.  

Initially, all the distributions in the scipy package were studied which resulted in an extensive 

runtime hence the list was shortened to twenty known distributions.  
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This model is an efficient method to see the resulting probability distributions for a range of 

sites. The results were then evaluated to determine if there are statistically significant 

differences 

Evaluation 

For each plant, state code, capacity group combinations, there are two scenarios: 

1. Resulting distributions are very different. 

2. Resulting distributions are similar with different parameters. 

In the second case, all those similar distributions were grouped. Additionally, we do the 

statistical KS test for the same plant to determine if 24, 25 were miscoded.  

The hypothesis of the test is that the two samples come from the same distribution. If 

the difference between the two samples is not significant enough to say that they have 

different distributions, we fail to reject the null hypothesis. 

Miscoded Plants 

State code 24 is maintenance outage and should not really take more than a week. 

Hence, any occasional duration greater than a week was considered an outlier and was 

discarded from the analysis.  

In some cases, many 24 durations were high numbers (more than a week) which 

indicates that in those plants, state code 24 was miscoded. For all those plants, we 

performed the KS test to see if 24,25 were the same. The result is in the below figure. In 

three cases, the KS test yields a positive value indicating that state code 24 and 25 were 

used interchangeably while in other cases, the KS test was negative meaning that there 

were some differences between state code 24, 25. However, these plants were still not 

using state 24 accurately and most data points were high numbers.  

Table 4 Miscoded plants 

 

Time series 

In this section, we are going to look at the miscoded plants (identified in Section 2.4.3) 

in more details and do a time series analysis. Broadly speaking, these graphs should 
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show that state 24’s were used as 25’s and there is no clear differentiation between the 

two. Some of these sites were behaving similarly and all the trends identified are 

discussed below.  

 In some cases, the historical data shows that there was a shift in the coding practices 

some time in the past. For example: 

- utility 92, plant 2 in 2015 stopped using 24’s and started coding everything as 25. In 

2012-2015, they seemed to code a lot of long outages as 24’s. 750 hours is about one 

month, and that is the ceiling you see for state 24  

- utility 41, plant 140 changed something in 2014  

 

  

In some cases, they are correctly coding the long outages as 25’s, but they are also coding a lot of 

short outages as 25’s too. 

- utility 90, plant 6  

- utility 41, plant 160  

 

In some cases, they have the right idea and code their shorter outages as maintenance and 

longer ones as planned outage but perhaps the cut-offs for 24’s is too high. 

- utility 60 plant 208 

- utility 50, plant 250 



38 
 

  

Recommendations and Future work 
After finding the miscoded plants and groups of similar plants, CEA wanted to see some general 

recommendations for different hydro companies (utilities). A common error across many 

utilities was having occasional errors in their state code 24 for most plants. While these outliers 

were discarded from the analysis, it is important to reiterate the definition and limit of state 24 

versus 25 to all the plants in these utilities. 

After reporting the results for downtime analysis to CEA, there is value in investigating the 

operating codes (11-16) and understanding the difference between the available states and 

whether all sites are reporting those consistently. The same method could be used as well as 

developing other methods of analysis.  

Table 5 Utility-level recommendations 

Utility Common errors Recommendations 

14 Most plants had some errors in their state 

24’s 

2 identical 24,25’s 

Communicate the definition and limits 

of 24 versus 25 

15 Data for 1 plant only, miscoded Get updated data 

Do the analysis again for more plants 

22 Most plants had some errors in their state 

24’s 

Communicate the definition and limits 

of 24 versus 25 

30 Not enough data for state 24,25 Get updated data 

Do the analysis again for more plants 

41 Most plants had some errors in their state 

24’s 

Communicate the definition and limits 

of 24 versus 25 

43 Old data, did not include in the analysis - 

50 Overall good, only 2 miscoded More analysis on those 2 plants 
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60 Most plants had some errors in their state 

24’s 

2 miscoded  

Communicate the definition and limits 

of 24 versus 25 

70 Not enough data for state 24,25 

1 miscoded 

Get updated data 

Do the analysis again for more plants 

80 Not enough data for state 24,25 Get updated data 

Do the analysis again for more plants 

81 Not enough data for state 24,25 Get updated data 

Do the analysis again for more plants 

82 Not enough data for state 24,25 Get updated data 

Do the analysis again for more plants 

90 Most plants had some errors in their state 

24’s 

2 miscoded  

Communicate the definition and limits 

of 24 versus 25 

91 Most plants had some errors in their state 

24’s 

2 miscoded 

1 identical 24,25’s 

Communicate the definition and limits 

of 24 versus 25 
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Capital Power Criticality Analysis Project Progress 

Report 
Pooyan Sharifi 

Project Overview 
Capital Power is an independent power generation company who own and operate over 

5100MW of power generation across 25 facilities in North America. Amongst these facilities 

there is a 875MW natural gas fueled power plant located in Brampton, Ontario. This project will 

involve a criticality analysis of the major systems and sub-systems in order to provide 

recommendations such as the criticality of components, how to decide which to keep. 

Additionally, a framework will be provided to help determine which spare parts to keep in 

inventory and the quantity. 

Capital Power has provided an initial dataset containing a list of all work orders conducted on 

assets within each major system. These systems were defined by Capital Power based on their 

technical experience with the process equipment. The four major systems identified by Capital 

Power include: 

1. Boiler Feedwater Pumps  

2. Condensate Pumps  

3. GCW & CCW Pumps  

4. GT Hydraulic Life Pump  

Boiler Feedwater Pumps 
The Boiler Feedwater Pumps and Motors are part of the feedwater system to the Heat Recovery 

Steam Generator (HRSG) IP and HP steam drums for the production of steam.  

The Feedwater Pumps provide feedwater at sufficient pressures and flow rates to maintain 

normal water level in the HP and IP drums from start-up to full load operation. Each HRSG (3 

in total) is equipped with two 100% capacity Feedwater pumps. The Feedwater Pump is a barrel 

type, eight-stage centrifugal pump manufactured by Sulzer Pumps Inc.  
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Figure 5: Cumulative Run Hours of Boiler Feedwater Pumps From 2009-2020 

The operating run hours of each pump were determined via a status control bit extracted from 

Capital Power’s SCADA system. This control bit (1 when pump is running, 0 when off) was 

extracted hourly from 2009-2020. Cumulative run hours were able to be computed which were 

later utilized for further data analysis. It is observed that pumps 11A, 12B and 13A are run the 

most.  

Basic Concepts 
A criticality analysis encompasses a process which assigns a criticality rating to assets based on 

their potential risks. From the initial dataset as provided by Capital Power the assets of the four 

major systems will be analyzed to identify major components / failure modes. With the given 

operational run time of said equipment the running hours of each equipment can be utilized to 

generate a time series of life cycles for each component for the asset. A 2-parameter censored 

Weibull distribution will be applied to the data in order to estimate important life characteristics 

for each of the components.   

Results and Discussion 

Boiler Feedwater Pumps 

The table below summarizes the results of fitting a right-censored 2-parameter Weibull 

distribution. The shape parameter and scale parameter of these distributions are shown below.  

Table 6: 2 - Parameter Censored Weibull Parameters for Boiler Feedwater Pumps 

Component Event Description Shape 
Parameter 𝜷 

Scale 
Parameter 𝜼 

Comments 

Lube Oil 
(Leaks) 

Oil Leaks, low oil tank 
level, gasket leaking, lube 
oil pump leak, seal repair 

1.289 8221 Wear 

Lube Oil 
(Filters) 

In-service high DP, high 
system back pressure, oil 
quality deterioration, etc. 

1.033 4005 Random 
failures 

Motor (Filters) Air filter high DP alarm 0.797 3187 Early-life 
failures 
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Pump (Leaks) In-board mechanical seal, 
o-rings 

1.362 2317 Wear  

 

Of the lube oil system there are two components or failure modes. The first being leaks which 

often occur as the gasket, seal or pump being inspected by an operator and noticing a leak. 

Additionally, a low oil tank level will also be classified as a failure due to oil leak. The corrective 

action undertaken is to repair these related equipment. The shape parameter for this failure 

mode is 1.289 which suggests the failure rate increases over time. This could be due to gradual 

wear of related parts such as the seal or gasket.  

In addition to oil leaks another major component or failure mode is of the lube oil filters. These 

filters eventually build up debris over time which increase the differential pressure across the 

filter and reduce the flow rate of the lube oil. This reduction in flow could result in an increase in 

lube oil temperature which could result in faster lube oil degradation or tripping of equipment 

due to high lube oil temperature. The shape parameter was approximately equal to one which 

suggests a constant failure rate over time. This would coincide with the idea that filters typically 

get clogged in roughly the same number of operating hours over time. 

The next major component of the boiler feedwater pumps is the motor which had two 

distinguishable failure modes. The first being the air filters of the motor which typically failed 

and required replacement when clogged resulting in a high differential pressure alarm. This 

component had a shape parameter of 0.797 which suggests it has early-life failures. The next 

component is of pump leaks which involve failure of the mechanical seal or O-rings on the 

pump. These had a shape parameter of 1.362 which suggest a failure rate that increases over 

time. This could be due to gradual wear of the seal and O-rings over time. 



 

A condition-based maintenance policy for a two-

unit system subject to dependent soft and hard 

failures: A reinforcement learning approach 
Seyedvahid Najafi 

Introduction 
Manufacturing systems are composed of multiple components that interact with each other in 

different ways. The components wear out with age and usage, and lack of an appropriate asset 

management plan can incur considerable operation and maintenance (O&M) costs and lead to 

industrial accidents, and safety hazards. Designing an appropriate program for maintaining 

complicated systems is a common concern in academic and professional circles, increasing 

workplace safety and reducing O&M costs. 

Condition-based maintenance (CBM), which prescribes actions when the actual state of a system 

is known, has recently received special attention to solving multi-unit maintenance optimization 

problems. Several CBM models have been designed proposing only the replacement of units, 

although repair actions are performed with different quality levels. When a unit fails, minimal 

repair can be performed, which returns it to the same state just before failure (as-bad). The 

other type of repair, which is referred to as general repair, improves a unit’s health, but it does 

not return it to the as-new condition [1,2].   

Yousefi [3] proposed a CBM policy for a multi-component system subject to deterioration and 

random shocks. The CBM proposes repair and replacement actions based on three degradation 

thresholds, where repair reduces the degradation by one level. The problem is formulated as a 

Markov decision process, and the Q-learning algorithm is applied to find the optimal policy. 

Jafari et al. [4] proposed a threshold-based CBM for a multi-unit system, in which perfect repair 

is allowed.  Najafi and Makis [5] proposed an algorithm to find the optimal CBM for a two-unit 

system, where one unit is under condition monitoring, and age-based maintenance is applied on 

the other unit. 

We propose an opportunistic CBM algorithm for a two-unit series system subject to soft and 

hard failures. The problem is formulated in the SMDP framework, and a reinforcement 

algorithm is applied to find the optimal policy and the expected long-run cost per unit time. 

Unlike traditional CBM approaches, no thresholds for maintenance intervention are considered; 

instead, the proposed policy maps condition monitoring data directly with the 
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repair/replacement actions. Using reinforcement learning enables us to consider both the age 

and deterioration of the units subject to condition monitoring. Moreover, in this study, general 

repair is allowed and can be performed at different quality.  

System Description 
The system consists of two major units under condition monitoring, and the failure of a unit 

leads to whole system failure, which is self-announcing. The state space of the system can be 

expressed as: 

 S = {𝑛𝑖 , 𝑧𝑖 , 𝑓𝑖|𝑛𝑖 ∈ {0, … , 𝑁𝑖̅}, zi ∈ {0, … , 𝑍𝑖̅}, 𝑓 ∈ {0,1}, 𝑖 ∈ {0,1}} (1) 

where 𝑛𝑖, 𝑧𝑖 and 𝑓𝑖 represent the age, deterioration, and status of unit 𝑖 ∈ {0,1}, respectively. 𝑁𝑖 

indicates the maximum useful age of unit 𝑖, 𝑍𝑖̅ is the maximum deterioration of unit 𝑖, and 𝑓 

represents the operational (0) or failure (1) status of the system. 

Actions (𝑎1, 𝑎2) are performed on unit 1 and unit 2, respectively, where 𝑎i ∈ {0, … , 𝑍𝑖} ∪ {MR} 

and actions consist of doing nothing (0), general repair (𝑎i ∈ {1, … , 𝑍𝑖 − 1}), minimal repair (MR), and 

replacement (𝑍𝑖).  

The deterioration of each unit is described by the gamma process {𝑋𝑡|𝑡 ≥ 0} whose probability 

distribution function is expressed as: 
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where the shape and scale parameters of the gamma process are 𝛼(𝑡) > 0 and β > 0, 

respectively, and the gamma function is: 
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The hazard rate is widely applied for condition monitoring purposes. The proportional hazards 

model (PHM) estimates the risk of failure, integrating the effect of both age and deterioration. 

The general form of the PHM can be represented as follows [6]: 

 0( , ) ( ) ( )t th t X h t X=
 (4)  

where ℎ0(𝑡) is the baseline function and depends on age only, and 𝜓(𝑋𝑡) is a function depending 

on environmental factors or health data referred to as covariates.  

A Weibull PHM distribution is applied to estimate the hazard rate: 
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where 𝜆 is the scale parameter, 𝑘 is the shape parameter, and 𝜃 is the regression coefficient 

vector of the covariates. 

Sojourn Times 

Different from soft failure that yields defective products, hard failure occurs randomly and stops 

the unit from operation. The remaining useful life of units depends on both age and 

deterioration and is estimated by [7]: 
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 𝐿̂(𝑡) = 𝐸̂(𝑇 − 𝑡|𝑇 ≥ 𝑡) (4) 

The remaining useful life can be estimated using the PH function [8]: 

 𝐿̂(𝑡) ≈ ∫ 𝑒𝑥𝑝 (− ∫ ℎ(𝑠|𝑧𝑡)𝑑𝑠

𝑡+𝜏

𝑡

) 𝑑𝜏
∞

0

 (7) 

When no action is performed on each unit, the sojourn time is computed as νt = min {𝐿𝑖̂(𝑡)}, 

where 𝐿𝑖̂ is the remaining useful life of unit 𝑖 ∈ {1,2}. If νt<Δ, a hard failure occurs, otherwise, 

νt=Δ, meaning that both units will survive over the inspection epoch. When a maintenance 

action is performed, sojourn time is computed using the following time parameters: 

Notation Definition 

TPGi(𝛿) preventive/opportunistic general repair time of unit 𝑖 

TPRi preventive/opportunistic replacement time of unit 𝑖 

THRi corrective replacement time of unit 𝑖 when hard failure occurs 

TSRi corrective replacement time of unit 𝑖 when soft failure occurs 

THGi(𝛿) corrective general repair time of unit 𝑖 when hard failure occurs 

TSGi(𝛿) corrective general repair time of unit 𝑖 when soft failure occurs 

TMi minimal repair time of unit 𝑖 

 Table 1. time parameters notation and definition 

 

where 𝛿 is the improvement made by general repair that reduces the unit deterioration from 𝑧 to 

𝑧′. Preventive general repair time is a function of the repair level, and the higher the 

improvement level, the longer the maintenance duration: 

 𝑇𝑃𝐺𝑖(𝛿) = (
𝛿

𝑍𝑖

. 𝑗) . 𝑇𝑃𝑅𝑖 (8) 

To what extent repair time is proportional to the replacement time depends on the system 

structure and is captured by the repair time coefficient 0 <  𝑗 ≤ 1. The other repair times are 

computed similarly, but corrective general repair times when soft and hard failure occur are 

proportional to TSRi and THRi, respectively. 

Reward structure 

In this study, O&M costs are modeled as negative rewards, and the following cost parameters 

are considered: 

Notation Definition 

CPGi(𝛿) preventive/opportunistic general repair cost of unit 𝑖 

CPRi preventive/opportunistic replacement cost of unit 𝑖 

CHRi corrective replacement cost of unit 𝑖 when hard failure occurs 

CSRi corrective replacement cost of unit 𝑖 when soft failure occurs 

CHGi(𝛿) corrective general repair cost of unit 𝑖 when hard failure occurs 

CSGi(𝛿) corrective general repair cost of unit 𝑖 when soft failure occurs 
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CMi minimal repair cost of unit 𝑖 

CS system setup cost  

CL production loss per unit 

CI inspection cost 

 Table 2. cost parameters notation and definition 

 

When no action is taken, no cost is incurred; otherwise, the system costs depend on the action 

type. For example, the preventive general repair cost is calculated using the following equation: 

 𝐶𝑃𝐺𝑖(𝛿) = 𝐶𝑆 + 𝐶𝐼 + (
𝛿

𝑍𝑖

. ℎ) . 𝐶𝑃𝑅𝑖 + 𝐶𝐿 . 𝑇𝑃𝐺𝑖(𝛿) (9) 

Repair costs are a function of improvement level, and higher quality actions incur higher 

maintenance costs. However, repair costs are also influenced by other technical factors and 

repair complexity, which is incorporated by the repair cost coefficient 0 < ℎ ≤ 1. 

Proposed Policy  
The system is inspected on an equidistant inspection interval of Δ, where the condition of each 

unit is monitored. If deterioration of unit 𝑖 exceeds its soft failure threshold 𝑚𝑖, a maintenance 

action is performed to return the deterioration to somewhere below the threshold. Otherwise, a 

preventive action can be performed to replace or improve the system condition. When hard 

failure occurs, the failed unit is rectified immediately, and there is an opportunity to improve the 

other unit. 

Reinforcement learning algorithm 
This study considered the long-run average cost optimality criterion and used the SMART 

(Semi-Markov Average Reward Technique) algorithm to find the optimal policy [9]. The SMART 

algorithm learns the value of action a in particular state s under policy 𝜋, i.e., 𝑅(𝑠, 𝑎), which is 

derived from the Bellman optimality equation for average reward SMDPs [10]:  

 𝑅𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) − 𝜌𝜋. 𝜈(𝑠, 𝑎) + ∑ 𝑝𝑠,𝑠′(𝑎) 𝑚𝑎𝑥𝑎′  {𝑅𝜋(𝑠′, 𝑎′)} (5) 

where 𝑝𝑠,𝑠′(𝑎) is the transition probability from state 𝑠 to 𝑠′ when action 𝑎 is chosen, and 𝜌𝜋 is 

the average reward. The algorithm updates the utility of action values using temporal differences 

between the current and next state action-values. The above equation can be rewritten as follows 

if the expected reward 𝑟 and the expected sojourn time 𝜈 is replaced with their observed values: 

 𝑅𝜋(𝑠, 𝑎)
𝛼𝑖
←  𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) − 𝜌𝜋. 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) + 𝑚𝑎𝑥𝑎′  {𝑅𝜋(𝑠′, 𝑎′)} (6) 

Where 𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) and 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) are the observed immediate reward and sojourn time 

resulted from taking action 𝑎 in state 𝑠, and 𝛼𝑖 is the learning rate at time 𝑖. The average reward 

is estimated as the ratio of cumulative immediate reward to the cumulative sojourn times: 

 𝜌 =
∑  𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′)𝑛

𝑖=0

∑ 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′)𝑛
𝑖=0

=
𝑅𝑇𝑜𝑡𝑎𝑙

𝑇𝑇𝑜𝑡𝑎𝑙

 (7) 

The SMART algorithm is as follows, where 𝛼𝑖 and 𝜖𝑖 are the learning and the exploration rates 

that decay according to a Darken-Chang-Moody search-then-converge procedure [11]. 
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1. Set maximum time step 𝐼𝑀𝑎𝑥 and initialize action values 𝑅𝑛𝑒𝑤(𝑠, 𝑎) = 0. Set the initial state 

(0,0,0), total reward 𝑅𝑇𝑜𝑡𝑎𝑙 = 0, total time 𝑇𝑇𝑜𝑡𝑎𝑙 = 0, and average reward 𝜌 = 0. 

2. While 𝑖 < 𝐼𝑀𝑎𝑥 do: 

2.1. Choose a random action with probability 𝜖𝑖; otherwise, execute action 𝑎 that maximizes 

𝑅𝑖(𝑠, 𝑎). 

2.2. Execute action 𝑎 and let the next state 𝑠′, generate sojourn time 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) and immediate 

reward 𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′). 

2.3. Obtain 𝑅𝑛𝑒𝑤(𝑠, 𝑎) following the update rule: 

𝑅𝑛𝑒𝑤(𝑠, 𝑎)
𝛼𝑖
← (1 − 𝛼𝑖)𝑅𝑜𝑙𝑑(𝑠, 𝑎) + 𝛼𝑖{𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) − 𝜌. 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) + 𝑚𝑎𝑥𝑎′(𝑅𝑜𝑙𝑑(𝑠′, 𝑎))} 

3. If a nonrandom action is selected in step 2.1: 

Update total reward 𝑅𝑇𝑜𝑡𝑎𝑙 with 𝑅𝑇𝑜𝑡𝑎𝑙 + 𝑟𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) 

Update total time 𝑇𝑇𝑜𝑡𝑎𝑙 with 𝑇𝑇𝑜𝑡𝑎𝑙 + 𝜈𝑖𝑚𝑚(𝑠, 𝑎, 𝑠′) 

Update average reward 𝜌 with 𝑅𝑇𝑜𝑡𝑎𝑙/ 𝑇𝑇𝑜𝑡𝑎𝑙. 

4. set current state 𝑠 to the new state 𝑠′ and update i with i+1. 

Numerical example 
In this section, system parameters, a numerical example, and alternative scenarios are 

presented. The system consists of two units in series that are both subject to condition 

monitoring. The lifetime of the units follows Weibull distributions with K=[30,25] B=[4.2,3.5], 

and 𝜽 =[1,1.5], which represent the scale (months), shape and regression coefficient vectors, 

where the ith element describes unit i. Maximum age, deterioration levels, and soft failure 

thresholds for the units are 20 months, 8, and 5, respectively. Setup cost, inspection cost, and 

production loss are $50, $20, $10, respectively, and maintenance costs are represented as 

follows: 

Notation Unit 1 Unit 2 

CPRi $4600 $2500 

CHRi $5000 $3000 

CSRi $4800 $2700 

CMi $400 $250 

Table 3. cost parameters 

The time parameters are as follows: 

Notation 
Unit 1 

(month) 

Unit 2 

(month) 

TPRi 0.023 0.019 

THRi 0.033 0.029 

TSRi 0.026 0.021 
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TMi 0.018 0.011 

Table 4. time parameters 

Note that general repair times and costs are computed according to Sections 2.1 and 2.2, 

respectively. Given the abovementioned parameters, the proposed policy is compared with the 

replacement policy, in which no repair actions are allowed, and units can be replaced only. In 

this experiment, the repair time coefficient is 𝑗 = 1, and three values for the repair cost 

coefficient (h=0.5, 0.67 and 1) are considered. The following graph shows the average reward 

under the replacement policy and the proposed policy when ℎ takes 1, 0.5, and .67. The 

inspection interval is three months for all policies. 

 

 

As shown in the graph the repair policy does not necessarily results in a lower long-term average 

reward than the replacement policy. The replacement policy incurs the average cost of $1202 

and outperforms the repair policy when ℎ = 1 with the average cost of $1398. However, the 

repair policy converges to a lower average cost when ℎ decreases to 0.67 and 0.5, resulting in the 

average cost of $925 and $995, respectively. The findings show that the repair policies with ℎ =

0.5 and ℎ = 0.65 accomplish 20% and 23% cost reductions, respectively, compared to the 

replacement policy. 

Conclusion 
In this paper, an opportunistic maintenance policy with general repair is proposed for a two-

unit series system, in which the condition of both units is monitored. The maintenance problem 

is formulated in the SMDP framework, and the condition under which the proposed 

maintenance policy minimizes the long-run average cost per unit time is discussed. The policy 

prescribes preventive, corrective, and opportunistic actions consisting of minimal repair, 

general repair, and replacement. The novelty of this research is the inclusion of general repair in 

the maintenance modeling of two-unit systems in the SMDP framework, where repair actions 

Graph 1. The long-run average cost of repair and replacement policies   
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with different quality are performed without considering maintenance thresholds. A numerical 

example confirms the superiority of the proposed policy over a similar policy in which general 

repair is not considered. 

To further the research, we plan to study systems with a higher number of units to enhance the 

practical value of the research, which requires finding an approach capable of managing a large 

state space. Furthermore, providing an analytical solution for the problem that shows the 

optimal policy will confirm the validity of the proposed approach.  
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A novel GRU-driven Stochastic Degradation 

Process for Battery Forecasting 
Zihan Zhang 

In recent decades, there has been significant growth in the development of rechargeable battery-

powered devices, such as electric vehicles, leading to a huge demand for batteries with high 

reliability and quality. End of life (EoL) is a critical indicator of battery health; it can be estimated 

by either adaptive stochastic processes or advanced machine learning techniques. However, these 

approaches either follow the degradation path having a specific form or lack stochastic 

interpretation due to its black-box nature. To address these challenges, an GRU-driven stochastic 

degradation process is proposed that can formulate battery degradation, in which drift fluctuation 

is controlled by a recursive Gaussian distribution with its mean learnt from an GRU-driven 

degradation pattern. Due to the non-Markovian state transitions, a sampling-based expectation 

maximization algorithm is developed to estimate model parameters based on historical 

observations. 

Introduction 
As Li-ion batteries have been widely used in electric vehicles (EVs) and hybrid EVs, the 

reliability of battery has become increasingly critical to the safe and reliable operation of a 

vehicle. This has led to increasing efforts of enhancing battery health management. [1] The 

prediction of state-of-health (SoH), a critical indicator of battery state, has been recognized as 

the central metric in battery health management and prognostic methods for SoH can be 

classified as model-based and data-driven forecasting methods. 

Model-based forecasting methods include electrochemical model, equivalent circuit model, 

empirical model and stochastic model. [2-3] The former two models attempt to utilize the 

physical or chemical dynamics of the battery properties by exploring complex aging 

mechanisms. [4] However, the high cost of measuring the internal degradation parameters 

makes their practical application prohibitively expensive. [5] In contrast, empirical models may 

be useful, because the mathematical forms of the degradation trajectory can be mined from 

historical battery degradation processes, such as linear model [6] and exponential model [7]. 

Similarly, stochastic models can capture the degradation uncertainty based on nonlinear Wiener 

processes with specific drift terms, such as linear [8] and exponential [9]. Furthermore, 

advanced filtering techniques, such as Kalman filter [10] and extended Kalman filter (EKF) [11], 

can help either empirical or stochastic models reduce impacts of measurement noise and 
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external disturbance to further increase forecasting accuracy. However, without prior knowledge 

of the underlying degradation mechanisms and limited by specific expressions of degradation 

path (i.e., mathematical form in empirical models and drift terms in stochastic models), it is 

difficult to generalize them to batteries of diverse types. 

Data-driven forecasting methods rely only on historical measurements to establish a 

degradation model, without prior knowledge of inherent degradation behavior. Optimization 

methods for data-driven models integrating kernel techniques are popular for improving the 

prediction efficiency, such as support vector machine (SVM) [12], relevant vector machine 

(RVM) [13] and Gaussian process regression (GPR) [14]. But it is difficult to generalize them due 

to their sensitivity to the kernel parameters [15]. To overcome this drawback, neural network-

based methods have been implemented, such as autoregressive model [16], and Elman neural 

network [17]. But their prediction power is limited to short-data windows. Recurrent neural 

networks (RNNs) can model long-range dependencies [18], but it is hard to implement back 

propagation in practice because the squashing nonlinear activation function causes the 

prediction power of the model exponentially decaying over time. Besides, gated recurrent unit 

(GRU) achieves more efficient operation for real-time prediction with less training parameters 

than other RNNs, such as LSTM (Long Short-term Memory). [19] Although GRU and LSTM 

exhibit better performance in learning long-term dependence than the traditional RNN, they 

cannot describe stochastic degradation characteristics. 

To close the gap, a GRU-driven degradation process is proposed for tracking battery degradation 

along with its increasing age. Specifically, the hidden state of the GRU neural network is 

introduced into the degradation process as a pattern term for capturing long dependencies 

among degradation rates. Then, a mapping function maps the pattern term to a mean of the 

degradation rate space. Thus, degradation rate is updated based on the entire degradation 

history instead of only the last time step, leading to a non-Markovian transitions. To cope with 

the non-Markovian transition, we developed a joint-learning sampling-based algorithm to 

estimate model parameters under the framework of Expectation Maximization (EM) method. 

Specifically, Sequential Monte Carlo (SMC) embedded in E-step provides posterior samples of 

degradation rates to M-step. Finally, a forecasting algorithm is proposed to estimate battery EoL 

based on the generative process of predicted degradation trajectory. 

The remainder of this paper is organized as follows. Section Ⅱ presents the model formulation, 

where a novel GRU-driven degradation process is developed. Section Ⅲ investigates the 

parameter estimation under the framework of Expectation Maximization method. Section Ⅳ 

explains how EoL can be estimated. Section Ⅴ validates the proposed model using a case study 

of CALCE dataset. Finally, Section Ⅵ concludes the paper. 

Pattern-driven Degradation Process 
Let {𝑆𝑡;  𝑡 ≥ 0} be a discrete-cycle battery degradation process, where 𝑆𝑡 represents the battery 

SoH at the charge and discharge cycle 𝑡 and can be calculated by 𝑆𝑡 = 𝐶𝑡/𝐶0, where 𝐶𝑡 is the 

capacity at cycle 𝑡 and 𝐶0 is the initial capacity. 

The evolution of the degradation process is controlled by degradation rate 𝜅𝑡 which represents 

the degradation speed. Additionally, the update of degradation rate is assumed to follow a 

recursive Gaussian distribution which is Markovian, i.e., 𝑝(𝜅𝑡|𝜅𝑡−1) = 𝒩(𝜅𝑡; 𝜅𝑡−1, 𝜉2). Note that 

𝜉 is the time-invariant standard deviation and the initial degradation state is 𝜅0, which are to be 

estimated. 
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We introduce a GRU-driven pattern term 𝑸𝑡 to model long dependency in degradation rate 𝜅𝑡, 

that is 

𝑸𝑡 = 𝐆𝐑𝐔(𝑸𝑡−1, 𝜅𝑡−1; 𝛉𝐺), (1) 

where 𝑸𝑡 characterizes the time-varying degradation pattern, and 𝛉𝐺 is the vector of hyper 

parameters of GRU neural network. Because (1) incorporates the entire evolution information, 

the Markovian assumption of traditional update of degradation rate will be violated. To enable 

the degradation rate 𝜅𝑡 controlled by the degradation pattern 𝑸𝑡, we use a mapping function ℎ𝜇(∙

) to project 𝑸𝑡 from pattern space to the mean of the Gaussian space, i.e., 

𝑝(𝜅𝑡|𝜅1:𝑡−1) = 𝒩(𝜅𝑡; ℎ𝜇(𝑸𝑡; 𝛉ℎ), 𝜉2), (2) 

where 𝛉ℎ is the parameter vector of mapping function. For notational convenience, 𝛉𝐺 and 𝛉ℎ 

are omitted in expressions of (1) and (2) in the rest of the paper. 

By combing (1) and the mapping function ℎ𝜇(∙) in a single GRU-driven (Gd) neural network, we 

develop our GRU-driven degradation process model as follows: 

𝜅𝑡~𝒩(𝐺𝑑(𝛉𝐺,𝛉ℎ)(𝑸𝑡−1, 𝜅𝑡−1)), 𝜉2), (3-a) 

𝑆𝑡 = 𝑆𝑡−1 + 𝜅𝑡 + ∫ 𝜑𝜏

𝑡

𝑡−1

𝑑𝛬𝜏, (3-b) 

where 𝜑𝑡 is the time-invariant diffusion parameter for battery degradation, Λ represents 

standard Brownian motion. Due to the stability of 𝜑𝑡, it can be reduced to a constant 𝜑. 

Compared with traditional methods proposed by Zhai, et al. [20], the proposed model can not 

only describe the degradation dynamics due to the adaptive degradation rate in the degradation 

process but also facilitate updating based on the entire historical degradation information 

thanks to the strong dependence-learning ability of GRU. 

Parameter Estimation 
Due to non-Markovian state transition in the proposed model, a joint-learning sampling-based 

expectation maximization algorithm is proposed to estimate model parameters. The model 

parameter vector 𝚯 = (𝚯𝜅 , 𝜑), where 𝛉𝜅 = (𝜅0, 𝜉, 𝛉𝐺 , 𝛉ℎ), can be learnt by maximizing the log-

likelihood of 𝚯, i.e., 𝚯∗ = argmax𝚯ℓ(𝚯), under EM framework. 

Sampling based E-step: 

The variational lower bound of the log probability ℓ(𝚯) , 𝐿𝚯 , can be expressed as 𝐿𝚯 =

𝐸𝜅1:𝑇~𝑞(𝜅1:𝑇) {log [
𝑝(𝑆1:𝑇,𝜅1:𝑇;𝚯)

𝑞(𝜅1:𝑇)
]} . Instead of maximizing ℓ(𝚯) , we can just maximize 𝐿𝚯 . 

Furthermore, optimal 𝚯∗ can be obtained by 𝚯∗ = argmax𝚯𝐸𝜅1:𝑇~𝑞(𝜅1:𝑇)[log𝑝(𝑆1:𝑇 , 𝜅1:𝑇; 𝚯)].  

Because the state transition is non-Markovian, the closed form of optimal 𝚯∗ cannot be found by 

following the conventional EM algorithm. Thus, 𝜅1:𝑇  need to be sampled from the posterior 

𝑝(𝜅1:𝑇|𝑆1:𝑇 , 𝚯𝑜𝑙𝑑). 

Using the variational lower bound, posterior samples 𝜅1:𝑇  can be obtained from 𝜅1:𝑇~𝑞(𝜅1:𝑇) 

rather than the original intractable posterior 𝑝(𝜅1:𝑇|𝑆1:𝑇, 𝚯𝑜𝑙𝑑) . Here, SMC is adopted to 

implement the sampling. Specifically, 𝑝(𝑆1:𝑡, 𝜅1:𝑡) is the unnormalized target distribution at cycle 
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𝑡. For notational convenience, 𝚯 is omitted in the remaining E-step., Then posterior samples 𝜅1:𝑇 

can be given by Algorithm 1. 

Algorithm 1: Posterior sampling based on SMC algorithm. 

Initialization: Set 𝜅0
𝑛 = 𝜅0 and 𝜔0

𝑛 = 1/𝑁 for 𝑛 = 1, … , 𝑁. 

1 For 𝑡 = 1, . . . , 𝑇 do 

2    Draw ancestor 𝑎𝑡−1
𝑛 ~ℱ(∙ |𝑾𝑡−1)  for 𝑛 = 1, . . . , 𝑁 , where ℱ(∙ |𝑾𝑡−1)  is the 

discrete probability distribution; 

3 
   Draw rate 𝜅𝑡

𝑛~𝑝(∙ |𝜅1:𝑡−1

𝑎𝑡−1
𝑛

, 𝑆𝑡)  for 𝑛 = 1, . . . , 𝑁 , where 𝑝(𝜅𝑡|𝜅1:𝑡−1, 𝑆𝑡) ∝
 𝒩(𝜅𝑡; 𝜇𝜅𝑡

, 𝜎𝜅𝑡
2 ) , 𝜎𝜅𝑡

2 = (𝜑−2 + 𝜉−2)−1  and 𝜇𝜅𝑡
= 𝜎𝜅𝑡

2 [𝜑−2(𝑆𝑡 −

𝑆𝑡−1) + 𝜉−2ℎ𝜇(𝑸𝑡)] 

4 
   Set 𝜅1:𝑡

𝑛 = (𝜅1:𝑡−1

𝑎𝑡−1
𝑛

, 𝜅𝑡
𝑛) for 𝑛 = 1, . . . , 𝑁; 

5    Compute the weight 𝜔𝑡
𝑛  for 𝑛 = 1, . . . , 𝑁 , where 𝑝(𝑆𝑡|𝜅1:𝑡−1) ∝

 𝒩(𝑆𝑡; 𝜇𝑆𝑡
, 𝜎𝑆𝑡

2 ), 𝜇𝑆𝑡
= ℎ𝜇(𝑸𝑡) + 𝑆𝑡−1 and 𝜎𝑆𝑡

2 = 𝜑2 + 𝜉2 

6    Compute the normalized the weight 𝑊𝑡
𝑛 for 𝑛 = 1, . . . , 𝑁; 

7 End for 

8 Sample 𝜒~ℱ(∙ |𝑾𝑇), and trace backward to obtain the particle path 𝜅1:𝑇
𝜒

. 

Joint-learning M-step: 

Based on the previous step, 𝚯∗ can be given by 𝚯∗  = argmax𝚯 [log𝑝(𝜅1:𝑇
𝜒

) + ∑ log𝑝(𝑆𝑡|𝜅𝑡

𝐵𝑡
𝜒

)𝑇
𝑡=1 ]. 

Due to independence between 𝚯𝜅  and 𝜑, parameter estimation for 𝚯 can be divided into two 

subproblems: 𝚯𝜅
∗ = argmax𝚯𝜅

log𝑝(𝜅1:𝑇
𝜒

; 𝚯𝜅) , and 𝜑∗ = argmax𝜑 ∑ log𝑝(𝑆𝑡|𝜅𝑡

𝐵𝑡
𝜒

; 𝜑)𝑇
𝑡=1 , which 

represents the maximum likelihood estimations of a GRU network and (3-b), respectively.  

Based on the statistical properties of Brownian motion, (3-a) can be rewritten as a Gaussian 

distribution. Thus, 𝚯𝜅 and 𝜑 can be jointly estimated by adopting the negative log-likelihood of 

(3-a) to be the loss function of the neural network. Specifically, the expectation of (3-a) (if ignoring 

the constant term 𝑆𝑡−1) can be expressed as 𝐸(𝑆𝑡) = 𝐺𝑑(𝛉𝐺,𝛉ℎ)(𝑸𝑡−1, 𝜅𝑡−1)). Furthermore, 𝜑 and 𝜉 

can be estimated by an extended Gd neural network. By Bayesian theorem, the variance of 𝑆𝑡 can 

be expressed as Var(𝑆𝑡) = 𝜉2 + 𝜑2. When constant terms are ignored, the log-likelihood of the 

Gaussian distribution can be formulated as 𝐿 ∝
1

2
(ln(𝜉2 + 𝜑2) + (𝜉2 + 𝜑2)−1(𝑆𝑡 −

𝐺𝑑(𝛉𝐺,𝛉ℎ)(𝑸𝑡−1, 𝜅𝑡−1))2) . Thus, parameter estimation problem is transformed into a neural 

network training problem as shown in Fig. 1. 
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Fig. 1. Parameter estimation of the proposed model. 

EoL Forecasting 
After obtaining all parameters, the proposed model can be used for battery degradation 

forecasting. Specifically, battery EoL refers to the number of cycles required for the battery 

capacity to fall below a specific malfunction threshold (usually 70-80%, 80% is used in this 

work) under a certain charge and discharge setting. Obviously, the initial SoH is always 1 based 

on the definition of SoH. Then battery EoL can be predicted based on the generated SoH series 

following Algorithm 2. 

Algorithm 2: Battery EoL forecasting. 

1 For 𝑖 = 1, . . . , 𝐼 do 

2 While 𝑆𝑇+𝑖 > 𝜁 do 

3    Perform pattern transition: (1); 

4    Predict degradation rate: (2); 

5    Predict SoH 𝑆𝑡+𝑖: (3-b); 

6    𝑘 = 𝑘 + 1; 

7 End while 

8 Calculate 𝐸𝑜𝐿𝑖 = 𝑇 + 𝑘. 

 

Based on parameters learned from historical SoH series, the proposed model can be formulated 

and EoL can be predicted correspondingly. 
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Implementation of Hybrid Prognostic Framework 

– Adaptive Degradation Model with Deep 

Learning Trajectory 
Dhavalkumar Patel 

Objective 
Estimation of the remaining useful life (RUL) and the degradation process plays an important 

role in the predictive maintenance of a component. The project focuses on the implementation 

of the hybrid prognostic framework as provided in the research paper; the developed program 

follows this framework.  

- Dataset 

NASA C-MAPSS turbofan engine degradation data is used for the project. The dataset comprises 

of four different engine sets: FD001, FD002, FD003, and FD004 with 100, 260, 100 and 260 

engine units respectively. Each units have varying cycles and respective sensor readings.  

- Initial Data Exploration 

The presented plots are for FD001 dataset. The sensor readings of all the engine units in this 

dataset are averaged for each running cycle. The scatter plots can be used to visualize the trends 

in the sensor readings along with descriptive statistics. The sensor readings s2, s3, s4, s11, and s17, 

have similar increasing trends in the data which is evident in the below plots. These sensors will 

later be considered for Health Index construction. The sensor readings s8, s13, and s15 also follow 

a similar trend; however, they may not be considered as their spread of data is not significant.  
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Fig 6: Trend plots for sensors’:  ('s2', 's3', 's4', 's11', 's17', 's15'). 

 

Below are the readings for other sensors which were not considered for health index calculation. 
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Fig 7: Trend plots for sensors which are not considered for Health Index Calculation 

 

- Remaining Useful Life (RUL) 

The remaining useful life is calculated based on the formula presented in the research paper. 

𝑁(𝑡𝑖
𝑗
) =  

𝑡𝑖
𝑗
−𝑚𝑖𝑛𝑗(𝑡𝑖

𝑗
)

𝑚𝑎𝑥𝑗(𝑡𝑖
𝑗
)− 𝑚𝑖𝑛𝑗(𝑡𝑖

𝑗
)
, where 𝑡𝑖

𝑗
 is the running cycles of the engine j at time i.  The remaining 

useful life distributions of each engine set is shown in the following image.  

 

 
Fig 8: Violin plots for RUL distributions for each engine dataset (FD001, FD002, FD003, and FD004). 

 

- Data Normalization 

MinMaxScalar is employed to normalize the data. The range of the normalized data is [0, 2] for 

the sensor readings and the normalized cycles. The RUL is normalized in the range of [0, 1] as it 

is used as a label for Health Index calculation. 

- Health Index (HI) Construction 

The Health Index is constructed using stacking ensemble algorithm. Several algorithms including 

Extra Trees Regressor (etr), Random Forest Regressor (rfr), and Support Vector Regression (svr) 

were evaluated and compared with the stacking model. The architecture of the model includes 

three mentioned base models (level-0 models), and a level-1 model (Linear Regression) which 

combines the predictions of level-0 models. All the models were evaluated, and the stacking model 

performed slightly better than the other models.  
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Fig 9: Box plots of Negative Mean Absolute Error for each model on FD002 engine set. 

 

Health Index values are constructed for the complete dataset using the stacking model. The plots 

below compares the original normalized RUL values (presented in red) with constructed Health 

Index (presented in blue). Individual models were developed for each engine set. 

 

 

Fig 10: Normalized RUL values (in red) and Constructed Health Index (in blue) 

- Model Architecture: (Encoder—LSTM, Decoder—CNN) 

The model architecture is structured as presented in the paper. 

LSTM Encoder: 

Input: Historical Normalized Cycles and respective Historical Health Index. The model can 

handle data with variable input and output length.  

 

Output: The last hidden state of the LSTM model is used as the encoded health vector.  

 

CNN Decoder: 
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Input: The encoded signal is stacked multiple times (*output length) and the future normalized 

running cycles are appended to this stacked data.  

 

Output: The CNN model outputs the future degradation signals.  

 

The sample model architecture is presented below. The parameters can be adjusted according to 

our requirements.  

 

 
Fig 11: Description of Model Architecture 

 

- Future Steps  

 

1. Tune Model Hyperparameters 

2. Define functions for calculation of evaluation metrics: RMSE, PCIP, and MPIW 

3. Separate the DNN model for comparative studies. 

4. Apply the developed program for new data. 

5. Incorporate the adaptive wiener and wiener model for comparative studies.  
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Meta-free representation learning for few-shot 

learning 
Kuilin Chen & Chi-Guhn Lee 

Introduction 
Currently, the vast majority of few-shot learning methods are within the general paradigm of 

meta-learning (a.k.a. learning to learn) [55, 4, 61], which learns multiple tasks in an episodic 

manner to distill transferrable knowledge. It is believed that meta-learning can learn unseen 

tasks with limited data more quickly and accurately using the transferrable knowledge, 

compared with training from scratch. Examples of transferrable knowledge could be good 

initialization of model parameters [57] or good embeddings of input data [16]. Meta-learning 

has been successfully applied to a number of domains, including few-shot classification [57, 44, 

24], few-shot regression [16, 17, 36] and meta-reinforcement learning [69, 18]. In this article, we 

focus on few-shot regression and classification problems, and aim to tackle three problems in 

existing few-shot learning methods.  

First, episodic meta-training methods are slow to converge, prone to over-fitting and tricky to 

implement [1]. Furthermore, recent studies [8, 11] cast doubt on whether it is the episodic meta-

learning algorithm or the learned representation that is responsible for fast adaption to new 

tasks. It is found that the effectiveness of optimization-based meta-learning algorithms is due to 

reusing high-quality representation, instead of rapid learning of task-specific representation 

[50]. After thorough literature review, we do not find any theories to support the assumption 

that meta-learned representation generalizes better than the one from simple transfer learning, 

except some limited empirical case studies [22]. Although transfer learning and meta-learning 

are treated separately in the few-shot learning literature, we derive the link between them. Then, 

a new transfer learning method for few-shot learning is developed by finding representation that 

generalizes well on meta-test tasks. The proposed method is easy to implement and fast to 

converge because it does not require episodic meta-training. 

Second, we address limitations in transfer learning methods for few-shot learning. Existing 

transfer learning approaches are restricted to few-shot classification problems [11, 14, 62, 37]. 

To the best of our knowledge, no transfer learning method is developed to achieve similar 

performance to meta-learning in few-shot regression. In the proposed MFRL, stochastic weight 

averaging (SWA) [31] improves the generalization capability of the representation for both 

regression and classification problems, because SWA is agnostic to loss function types. 
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Compared with most transfer learning approaches in few-shot learning that improve the quality 

of representation in an ad-hoc way, the proposed MFRL can be understood intuitively from the 

perspective of loss landscape geometry in modern deep neural networks.  

Third, we calibrate the probabilistic output from the model learned upon few-shot samples in 

the meta-test phase. Few-shot learning models can be used in risk-averse applications such as 

medical diagnosis [46]. The diagnosis decision is made on not only point estimation but also 

probabilities associated with the prediction. The risk of making wrong decisions is significant 

when using uncalibrated models [3]. Despite a plethora of few-shot learning methods to 

improve the point estimation accuracy, few methods are developed to get probabilistic models 

with well calibrated uncertainty. Different from previous methods that integrate Bayesian 

learning into episodic meta-training [25, 17, 69, 58], our method only requires training an 

appropriate linear layer in the meta-test phase to get models with well calibrated uncertainty. 

Hierarchical Bayesian linear models are used to properly capture the uncertainty from very 

limited training samples in few-shot regression. In parallel, we scale the softmax output to make 

the few-shot classification model well calibrated. 

Our contributions in this work are summarized as follows: 

• We derive the relation between transfer learning and episodic meta-learning, and 

propose a transfer learning method that can handle both few-shot regression and 

classification problems with performance exceeding SOTA. 

• We provide an explainable perspective to tackle few-shot learning problem based on 
geometry of loss landscape in modern deep neural networks. 

• The proposed method results in well calibrated uncertainty in few-shot learning models, 
while preserving SOTA accuracy. 

• Compared with existing few-shot learning methods, the proposed method is much easier 
to implement and more computationally efficient. 

Results 
We follow the standard setup in few-shot learning literature. The model is trained on a meta-

training dataset and hyperparameters are selected based on the performance on a meta-

validation dataset. The final performance of the model is evaluated on a meta-test dataset. The 

proposed method is applied to few-shot regression and classification problems, and compared 

against a wide range of alternative methods. 

Few-shot regression 

Sine waves [16] and head pose estimation [45] datasets are used to evaluate the performance of 

MFRL in few-shot regression. 

The results for few-shot regression are summarized in the table for sine waves and head pose 

estimation. In the sine wave few-shot regression task, MFRL outperforms all meta-learning 

methods. It demonstrates that the high-quality representation can be learned in supervised 

learning, without episodic meta-learning. Although DKT with a spectral mixture (SM) kernel 

achieves very high accuracy, the good performance should be attributed to strong inductive bias 

to periodic functions in the SM kernel [66]. In the head pose estimation experiment, the 

proposed method also achieves much better accuracy than MAML, Bayesian MAML and DKT. 

In both few-shot regression problems, SWA results in improved accuracy, indicating that SWA 

can improve the quality of features and facilitate the learning of downstream tasks. In addition, 
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uncertainty is correctly estimated by the hierarchical Bayesian linear model with learned 

features using just 10 training samples. 

 

Few-shot classification 

We conduct few-shot classification experiments on four widely used few-shot image recognition 

benchmarks: miniImageNet  [51], tieredImageNet [53], CIFAR-FS [5] and FC100 [43]. 

During testing, we conduct 5 independent runs of 600 randomly sampled few-shot classification 

tasks from test classes, and calculate the average accuracy. Each task contains 5 classes, 1 x 5 or 

5 x 5 support samples and 75 query samples. A logistic regression model is learned only using 

the support samples. The classification accuracy is evaluated on the query samples. The results 

of the proposed method and previous SOTA methods using similar backbones are reported in 

tables. The proposed method achieves the best performance in most of the experiments, when 

compared with previous SOTA methods. Our method is closely related to Baseline++ [8] and 

fine-tuning on logits [11]. Baseline++ normalizes both classification weights and features, while 

the proposed method only normalizes features. It allows our method to find a more accurate 

model in a more flexible hypothesis space, given high-quality representation. Compared with 

fine-tuning on logits, our method obtains better results by learning a new logistic regression 

model on features, which store richer information about the data.  Some approaches [54, 59] 

pretrain a C-class classification model on all training data, and then apply highly sophisticated 

meta-learning techniques to the pretrained model to achieve SOTA performance. Our approach 

with SWA outperforms those pretrained-then-meta-learned models, which demonstrates that 

SWA obtains high-quality representation that generalizes well to unseen tasks. Compared with 

improving representation quality for few-shot classification via self-distillation [62], the 

computational cost of SWA is significantly smaller because it does not require training models 

from scratch multiple times. Moreover, SWA can be applied to find good representation for both 

few-shot regression and classification, while previous transfer learning approaches can only 

handle few-shot classification problems [62, 37]. 
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The proposed method not only achieves high accuracy in few-shot classification, but also makes 

the classification uncertainty well calibrated. Reliability diagrams can be used to check model 

calibration visually, which plot an identity function between prediction accuracy and confidence 

when the model is perfectly calibrated [9]. Figure shows the classification reliability diagrams 

along with widely used metrics for uncertainty calibration, including expected calibration error 

(ECE) [26], maximum calibration error (MCE) [41] and Brier score(BRI) [7]. ECE measures the 

average binned difference between confidence and accuracy, while MCE measures the 

maximum difference. BRI is the squared error between the predicted probabilities and one-hot 

labels. It is obvious that Baseline++ and DKT are significantly under-confident because cosine 

similarity is limited between -1 to 1 and flattens the peakedness of predictive probabilities. 

MAML is over-confident because tuning a deep neural network on few-shot data is prone to 

over-fitting. Meanwhile, Proto net and matching net are better calibrated than MAML because 

they do not fine-tune the entire network during testing. Nevertheless, they are still slightly over-

confident. The results indicate that MFRL with a global temperature scaling factor can learn well 

calibrated models from very limited training samples. 

Conclusions 
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In this article, we derive the relation between transfer learning and episodic meta-learning. 

Based on the geometry of loss landscape of modern deep neural networks, a transfer learning 

approach is developed to learn representation that generalizes well to unseen tasks using SWA. 

The proposed method can be applied to both classification and regression tasks. Extensive 

experiments show that our method not only outperforms other SOTA methods on various 

datasets but also correctly quantifies the uncertainty in prediction. 
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Automatic Airport Xray Baggage Scanner via 

Adversarial Domain Adaptation 
Jahyun (Lucrece) Shin 

Background 
The aim of this research is to build an automatic airport security baggage scanner. Currently, 

human operators at airports are inspecting if travellers’ baggage contains any harmful objects. It 

would be both time and cost-effective to implement a “smart” scanner that can automatically 

perform this scanning process to detect any harmful objects.  

Data 

Xray Images 

Incheon International Airport located in Incheon, South Korea provided us with Xray images of 

scanned baggages containing harmful objects, as shown in Figure 1. The provided Xray images 

were labeled with seven classes: gun, knife, hard disk, phone, battery, usb, and shuriken. During 

initial stages, we decided to consider only two classes, gun and knife. 

 

 

 

 

 

 

Figure 1. Examples of scanned Xray images provided by Incheon International Airport. 

Removal of Duplicates. The given Xray images contained many duplicates, in the form of 

different rotations of the same image. In order to calculate the number of unique images, all 

such duplicates were removed.  

Removal of Whitespace. Most gun and knife Xray images came with a big white space that 

filled nearly three quarters of the entire image space. Since this is a waste of information for 
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such high-dimensional data, they were cropped tightly to only contain the useful content of the 

image. 

Removal of Kitchen Knife Images. The given knife class is a mix of three different 

categories of knife: cutter knife, other knife, and kitchen knife. However, kitchen knife images 

are very clogged with a large overlap with other objects in the bag, as shown in Figure 2 (a) and 

(b). Although the final goal will be to detect the object in such clogged environments as well, for 

initial stages of model development, these images were considered as a source of noise, since the 

images of other categories of knife at least have a clear and isolated shape of knife, as shown in 

Figure 2 (c) and (d). Thus, kitchen knife images were removed from the dataset. 

 

(a)                                (b)                                        (c)                                        (d) 

Figure 2. Xray images of knife class. (a), (b): kitchen knife images, (c), (d): other knife images 

 

Google Images 

The biggest issue faced in this topic was that there were not a sufficient number of Xray images 

to build a robust model without overfitting. The suggested solution was to scrape Google images 

of the same objects, as shown in Figure 3, which are openly available in tens of thousands of 

quantities from the internet. When a model is trained with ample Google images, we can 

develop a technique to adapt the model to perform well for Xray images as well. 

Table 1 summarizes the number of Google images and Xray images, which shows that there are 

much more unique and labeled Google images available than Xray images. 

 

Table 1. Number of Google and Xray images. 

Class No. of Google images 
No. of Xray images 

(original) 

No. of Xray Images 

(no duplicates or kitchen knife) 

Knife 1111 550 83 

Gun 1045 1050 111 
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Figure 3. Examples of scraped Google images of gun and knife. 

 

Methodology 

ResNext-50 Backbone 

In this problem, we take the image classification approach, where we will classify the whole 

image an object. For the main backbone model for image classification, we use Resnext-50 [3] 

for its relatively few number of parameters than other models such as vgg or AlexNet. It also has 

lower top-1 and top-5 error than the regular ResNet-50 or -101 [5]. 

Vision Transformer [7] Backbone 

We also experiment with using a fairly recently introduced image classification model named 

Vision Transformer [7]. Transformer [8] via self-attention has received enormous popularity in 

applications in natural language processing. Although the convolutional neural networks are 

still the most popular building blocks in computer vision, some research has been carried out for 

using transformers for image classification tasks. A recognized model is called Vision 

Transformer [7], ViT for short, developed by Google. As shown in Figure 4, the model divides an 

image into 16x16 pixel patches, thus creating 196 image “tokens”, and calculate each one’s 

attention to one another using a transformer. Such method was motivated by the idea that ViT 

imposes a lesser extent of structural bias than CNNs, thus enabling better generalization when 

trained with a very large amount of images. As expected, ViT resulted in a better classification 

result than ResNet when trained with a very large dataset (21k images) [7]. 

 
Figure 4. Vision Transformer (ViT). 

“Benign” Class 

At first, a ResNext-50 model was trained with Google images of two classes (gun and knife). 

However, when the same model was tested with Google or Xray images that do not contain gun 
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or knife, it classified nearly all of them as knife, with 90 to 100% confidence. This result was 

alarming, since most baggage at the airport should not contain a gun or knife, and having such a 

high false alarm rate would be very inefficient.  

Consequently, a third “benign” class was introduced, which represents all objects in the world 

that are not gun or knife. For this class, google images of any random objects not related to gun 

and knife were scraped. For Xray domain, given images of classes other than gun and knife 

(battery, usb, hard disk, and phone) were used. 

Adversarial Discriminative Domain Adaptation (ADDA) 
Since there are not enough Xray images to build a robust model, we use the google images with 

rich annotations as training data, and use the small amount of Xray images only for testing the 

model. Consequently, the specific problem is to reduce the difference in the distributions of 

Google images and Xray images, so that the same model will work well on both types. Since Xray 

images have inherently much different characteristics than Google images, a model trained only 

on the Google images might provide disappointing outcomes when tested on Xray images [2]. 

This issue is known as domain shift [2].  

In order to accommodate for domain shift, we introduce Adversarial Discriminative Domain 

Adaptation (ADDA) [1]. Overview of the model is shown in Figure 5. During training stage, the 

model first pre-trains a source encoder and a source classifier on the class labels of labeled 

source images. Next, a target encoder, which has the same structure with the source encoder, is 

initialized with the pre-trained weights of the source encoder from the first step. It then gets 

trained while the source encoder weights are frozen.  

 

 

Figure 5. Overview of Adversarial Discriminative Domain Adaptation (ADDA). 

 

The ADDA model assumes that the target domain is unlabeled, so it does not optimize for the 

class labels of the target domain. Instead, it introduces a discriminator model, which is a series 

of fully connected layers, that tries to classify the domain label of each image. It receives both 

source encoder and target encoder's encoded features of each image, and tries to classify which 

one belongs to which domain. The goal is to confuse the discriminator so that it will not be able 

to tell if the encoded feature is from source domain or target domain. This way, the target 

encoder can be trained to map target images to a similar distribution with the source images.  

Lastly, during the test stage, we test the model with target images, using the target encoder and 

source classifier, to get the class labels for the target images. 
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Modifications. Few modifications are made to the original ADDA model. Instead of two 

separate encoders for the source and target domains, a single encoder is used. This eliminates 

the pre-training stage of the source encoder, and instead trains a single encoder with both 

source and target images together. Secondly, the original ADDA model trained the target 

encoder with domain classification loss only, since the source encoder weights were frozen. In 

the modified model, the single encoder is trained with source classification loss (only using the 

source images), and is simultaneously trained with domain classification loss with both source 

and target images. This way, classification and domain adaptation tasks can be done at the same 

time.  

Multi-label Approach 

Most Xray images contain many more objects than the object of interest, as shown in Figure 1 

and 2, while many Google images have a distinctive, isolated presence of the object of interest. 

This presence of many other objects in Xray images can be quite confusing to the model that was 

trained only with Google images. To account for this, instead of making the model to classify the 

image as one of the three classes, a more flexible approach was taken by making the model 

predict the probability of the image belonging to each of the three classes.  

If using a single-label approach, the label of a single image would be a single number (i.e. 0, 1, 2) 

for each class. For a multi-label model, a label for an image is composed of three binary 

numbers (0 and 1), where 1 means the label is present in the image and 0 means it is not.  

It is also found to be beneficial if a soft label was used for benign class, due to the model’s 

tendency to always predict the benign class with more confidence. Thus, the label for only the 

benign class is changed to 0.5, while the other ones are left as 1.  

All Google images’ labels are re-formulated to distinguish between images that are with or 

without benign objects. For example, in Figure 6, image (a) was given a label of [0, 0, 1] for 

[isBenign, isGun, isKnife] with only isKnife = 1. Image (b) with a knife and benign objects both 

present were given a label of [0.5, 0, 1] with isBenign = 0.5 (soft label) and isKnife = 1. 

 

                                                 

           (a) Google image with knife only        (b) Google image with knife and benign objects 

 

Figure 6. Google images of knife class. 

Iterative Erasing Using Visual Attention 

When a human operator suspects that there is a gun in an image, she would look closer and 

focus on the area of the image that she thinks contains the gun and pay less attention to the 

surrounding areas. Intuitively motivated by this, we experiment with the iterative “erasing” 
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method during the prediction stage, using the intermediate attention weights available by the 

Vision Transformer [7] model. The interpolated attention weight matrix, which has the same 

dimension with the image (e.g. 224 by 224), contains a value between 0 and 1 for each pixel of 

how much the model attended to the pixel while making the class prediction for the image, with 

0 being not at all and 1 being highly attended. When we mask the original image using this 

attention matrix as the mask, the desired output is having the area containing the object of 

interest untouched, while the surrounding and background areas darkened. Such an example is 

shown in Figure 7, with three iterations of erasing. The label P(gun) for each image which 

indicates the model’s predicted probability of the image containing a gun. It can be seen that 

with each iterative erasing, the model predicts that there is a gun in the image with higher and 

higher probability. This shows the effectiveness of the iterative erasing method in correctly 

identifying the object of interest in the image.  

 

 

                (a) P(gun) = 0.023                  (b) P(gun) = 0.188                   (c) P(gun) = 0.588 

Figure 7. Three Iterations of “Erasing” the Image Using Attention Weights 
Experiments 
For ResNext-50 backbone, we use the architecture and pre-trained weights from  ImageNet 

competition provided in Pytorch. For ViT backbone, we use the architecture using 16x16 patches 

and weights pre-trained with ImageNet-21K dataset. When training ADDA, the adversarial 

discriminator consists of 2 fully connected layers with 1024 and 2048 hidden nodes. Each layer 

uses a ReLU activation function. Optimization uses Adam optimizer for 50 epochs with a 

learning rate of 2e-6, and a batch size of 20 images. All training images are rescaled to 224x224 

pixels. We use mean square error (MSE) loss for class classification by the encoder (regarding 

the soft label for the benign class), and cross-entropy loss for domain classification by the 

discriminator. ADDA was trained using ResNext-50 backbone only, because using ViT backbone 

showed a non-sensical result of all images being predicted as a single class, with the single-

predicted class alternating between different classes at each training iteration. We are currently 

looking into possible causes of this odd problem.  

Results 
Summary. The summary of the experiments is presented in Table 2, which shows that using a 

multi-label approach with ADDA using ResNext-50 backbone achieved the best result with both 

benign and gun classes. It is also noted that the multi-label ViT model trained with google 
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images only reaches gun and knife recalls comparable with ADDA when predicting with the 

iterative erasing strategy.   

Table 2. Recall for Each Class Using Different Models. 

   Method 
Benign 

Recall 

Gun 

Recall 

Knife 

Recall 

   ResNext-50, Source-only, single-label 0.997 0.137 0.072 

   ResNext-50, Source-only, multi-label 0.997 0.436 0.145 

   ViT, Source-only, single-label 1.000 0.359 0.545 

   ViT, Source-only, multi-label 

   (without iterative erasing prediction strategy) 
1.000 0.436 0.424 

   ViT, Source-only, multi-label 

   (with iterative erasing prediction strategy) 
1.000 0.709 0.609 

   ADDA (ResNext-50), single-label 1.000 0.479 0.084 

   ADDA (ResNext-50), multi-label 1.000 0.778 0.697 

 

t-SNE plots for class labels. For class-wise qualitative analysis, Figure 8 shows t-SNE [6] 

plots that visualize the feature distributions of the multi-label ADDA model for different class 

labels (shown in different colours). Plot (a) for Google image features show quite well-seperated 

three clusters for the three class labels, while plot (b) for Xray image features show much 

unclear boundaries between the three classes, which explain the lower recalls for gun and knife 

images for Xray domain. Plot (c) shows overlaid features of both domains, using the same colour 

for the same class label while lighter for Google domain and darker for Xray domain. It shows 

that the features with the same class label across different domains are located near each other 

(e.g. skyblue and darker blue points representing Google gun images and Xray gun images, 

respectively, are near each other). This semantically equivalent distribution of image features 

from the two different domains is called semantic alignment [9]. 

 

            

  (a) Google image features             (b) Xray image features              (c) Google + Xray overlaid 

Figure 8. t-SNE of class labels. t-SNE visualizations of ADDA features of Google and Xray images of three 

different labels. 
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t-SNE plots for domain labels. For domain-wise qualitative analysis, Figure 9 visualizes 

with t-SNE [6] the feature representations of the ADDA model with the two different domain 

labels (Google as target domain- green and Xray as source domain- pink). Near the beginning at 

epoch 5 of ADDA training, the two domains look quite separated. As training proceeds; however, 

the two become closer. At epoch 25, clusters of the two domains appear much closer to each 

other.     

     

               (a) Epoch 5                                  (b) Epoch 15                                  (c) Epoch 25 

 

 

 

Figure 9. t-SNE of domain labels. t-SNE visualizations of ADDA features of Google and Xray images 

at epoch 5, 15, and 25 of ADDA training. 

Conclusion 
The ADDA model with multi-label approach was shown to be a simple yet effective method for 

domain adaptation between Google images and scanned Xray images, despite large domain 

shifts. The effectiveness of the proposed method was demonstrated through higher recall for 

both gun and knife classes than using a single-label, source-only model without domain 

adaptation. Since this is still an initial model development stage of the research, more effective 

and intuitive approaches will be considered in the future.  
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Detecting TTC Power Rail Anomaly from Infrared 

Recordings 
Tushar Aggarwal 

Introduction 
Toronto Transit Commission (TTC) Line 3 in Scarborough, Ontario is a 6.4km long light rail 

transit (LRT) railway line which runs from Kennedy to McCowan; the train connects 6 stations 

in its path. In May 2017, during operation, a train sustained some damages caused due to an 

anomaly in the power rail which resulted in evacuation and line 3 closure for several hours. 

Anomalies are high temperature spots along the power rail which could cause the metal to bend 

and deform. 

To prevent another incident in line 3, TTC actively monitors and does preventative maintenance 

along the track. One of the key methods used by TTC is actively scanning the track using FLIR 

infrared cameras. The thermal camera is mounted on the front of the train which scans and 

records the track as the train runs throughout the day. This allows power rail anomalies to be 

identified from the scanned thermal images as high temperature spots show up on track and 

then fixed by maintenance team to prevent any damage or unexpected closure of line 3. Though, 

this solution is effective it has some major drawback; the recorded thermal video of the track is 

manually checked and observed for anomaly with each video spanning 15-20 minutes. This 

requires long span attention and require high amount of worker time which makes such task to 

be a more suitable application for computer vision applications.  

The goal of this project is to create an anomaly detector which detects railway track anomalies in 

video frames recorded by the FLIR thermal camera.  

In 2018, Tuocheng Liu from C-MORE Labs at University of Toronto, worked on this project 

using two algorithms: Single Shot Detector (SSD) and Faster R-CNN. Both Algorithms have 

shown remarkable results in the field of object detection. However, for detecting anomalies a 

major requirement for the project is to have high recall value of nearly 1 (100%) and high 

precision above 85%. While both algorithm implementation by Liu showed high precision 

values, the recall values were only 75%. This project builds on the work of Liu in exploring new 

models and algorithms. 

Background 
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For this project following methods were used: 

1. Object Detection 

2. Classification 

3. Anomaly Detection Algorithms 

Object Detection 

Object detection is one of the key applications of computer vision where algorithms are trained 

to detect an instance of a particular class in each image/video. Classification and localization are 

the two main working principle of an object detector. The true positive frame shows a bounding 

box around the detected object along with the detection confidence score and class label of the 

object.  

YoloV4 model was selected to detect anomalies (high temperature spots) in power rails as one 

class. 

Classification 

Classification is one of the key methods in machine learning specially for image classification.  

For this project convolutional neural networks were used to classify images into two classes 

namely: Anomalous frames, and Normal Frame. The dataset was split in 80% training images 

and 20% validation images with equal number of anomalous and normal images in both classes 

for training and testing.  

Convolutional neural network learns and extract the details in the image while then a fully 

connected neural network is used for classification.  

In addition to the classification in two classes, a single class convolutional neural network 

(CNN) was also trained using normal images. This was to test if the single class CNN can detect 

anomalous images from normal images. 

Anomaly detection algorithms 
Anomaly detection algorithms are used for detecting anomalies in several different types of 

datasets. One Class Support Vector Machine (OC-SVM) is one of the selected algorithms which 

is a modified version of SVM. Isolation forest is the second algorithm used for detecting 

anomalies. 

Anomaly detector algorithms are trained on normal data points; This allows the algorithm to fit 

on normal data and when an outlier is present which does not conform to normal dataset it is 

detected as an anomaly.  Since images are very high dimensional data, both anomaly detection 

algorithms were used in conjunction with a feature extractor model such as VGG-16 for 

dimensionality reduction. 

Metrics 

For the two classes (anomalous and normal frames/data point) a confusion matrix is used which 

can help derive the evaluation matrix. 

  Predicted Conditions 

  Positive Negative 
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True 

Condition 

Positive True Positive False Negative 

Negative False Positive True Negative 

Figure 1: Confusion Matrix 

Where true positives are the predicted frames that are positive predictions and are positive. That 

is an anomalous frame is predicted as anomalous. 

False Negatives are frame that are positive for a particular class but are detected as negative. An 

example of this is an anomalous frame detected as normal frame. 

False positive are frames that are negative frames but are classified as positive frames. An 

example of this is anomalous frames being classified as normal frame.  

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

The proportion of actual positives that are correctly detected. It tells how much of the frames 

with human observed anomalies are identified by the model. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

The proportion of true positives to all detected positives. It tells how much of the detections are 

correct in all inference results. 

Tuning and optimization 

Methods like grid search were used to find the best hyper parameters for different algorithms. 

This helps to optimize the algorithm to give best results. 

Dataset and configuration 
TTC provided two sets of videos scanning Line 3. One set contains 4 videos recorded in 

December 2017 (winter set) with each video containing approximately 16000 frames, the second 

set contains 8 videos in May 2018 (summer set) with each video containing approximate 10,000 

frames. Each set contains videos of Northbound as well as Southbound videos of the train; 

however, since the camera was mounted on the front of the train, some of the videos are not 

useful as the camera is not looking at the power rail. This gives us only three videos useful in the 

winter dataset and only 2 videos useful in the summer set.  

An expert from TTC manually observed the videos to identify several anomalies in the winter 

data set. A total of 45 anomalies were identified with 9 anomalies found on the power rail on the 

other side of the track. Since the two datasets are recorded at different time of the year, they 

cannot be used together without domain adaptation which is beyond the scope of this project. 

Since, only winter dataset was annotated by an expert. Only the winter dataset was used for 

training and testing. However, summer dataset was reviewed to find anomalies, a total of 3 

anomalies were identified. Which shall be used for future work.   

It is important to note that the videos provided are not visual data stored as RGB/Grayscale 

channel(s), but the intensity values of radiation recorded by the thermal camera as a single 
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channel matrix. The frames can be visualized in multiple ways, however, for the winter videos 

temperature values setting were selected before extracting images. All the frames were extracted 

as ‘.jpg ’image files without using any colour palette; this was done to help algorithms identify 

anomalies specially in scenarios where the train was running in the tunnels. A special software 

from FLIR was used for frames manipulation called ResearchIR before the images were 

extracted.  

For this project four set of image datasets were created from the same winter set video frames. 

The first dataset was 640x512 images that were provided with the project (LIU’s document). 

The anomaly markings and bounding boxes for YoloV4 were created for this dataset and were 

used in the YoloV4 algorithm. A total of 779 Anomalies were labeled. It is important to note that 

this dataset was a 3 channel RGB dataset where a colour palette was applied on the images using 

ResearchIR software. For winter dataset, pascal VOC bounding boxes information was also 

available from previous student which was used to create new bounding box information for 

YOLOV4 algorithm using a python script. For YoloV4 algorithm’s implementation, it was 

ensured that all the frames for an anomaly only appeared either in the training set or 

validation/test set.  

Datasets 2 and 3 were created with the help of ResearchIR software, dataset 2 was with high 

temperature threshold values which only showed high temperature spots (between 110C to 210C) 

as shown in figure 11 and dataset 3 was created without any threshold values as shown in figure 

10. These 35000+ images in both datasets were then reviewed to extract anomalies from 

original datasets and to remove all the files with noise such as high temperature spots due to 

wires, etc. Datasets 2 and 3 were then combined to increase the dataset images for training and 

testing for some experiments. However, anomaly detection and classification algorithms were 

also tested on dataset 3 (original images) alone. Images for datasets 2 and 3 were both grayscale 

images to reduce complexity for the convolutional neural network. The final dataset had 779 

anomalies. 

Dataset 4 was created from dataset 3 where the images were cropped to bottom left corner to 

keep most of the track in the center of the image as shown in figure 12. This dataset was also 

used for experimentation with anomaly detection and classification algorithms.  These images 

were further reviewed for to separate anomalies from normal images as some of the anomalies 

were cropped. This brought total number of anomalies from 779 to 668. 

All the anomalies were handpicked from the datasets and moved to different folders. 

Additionally, a python script using OpenCV library was used to resize the images based on 

algorithm input requirements. Apart from the provided data, some extra anomalies were created 

using photoshop that were experimented during model training.  

In addition to our dataset, data augmentation technique was used in TensorFlow to increase the 

size of our dataset while training. 
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            Figure 2 : Image in Dataset 3        Figure 3: Image in Dataset 2 

 

               

Figure 4: Dataset 4 - Before and After Cropping 

Experiment and Results 
Anomaly detector development requires a lot of experimentations. Different algorithms and 

combinations were used to find the best results. For the first part of the experiment, an object 

detection algorithm was used.  

The project previously showed some good results using the object detection models such as 

Single Shot Detector (SSD) and Faster RCNN. However, with newer advancements better 

detectors have been developed since then. As a results YOLO V4 was selected for an updated 

algorithm, to detect anomalies in the winter dataset.  

YoloV4 
For YoloV4 Dataset 1 was used which contained images in RGB channel and the model was 

trained only on the anomalies. Out of the 45 anomalies the model was trained using 40 

anomalies (705 frames) and the 5 anomalies in test set (74 Images). The model was trained for 

3000 iterations and 6000 iterations. The training loss for the model is shown in figure 6 where 
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the model loss descends to a very low value. The results for the YoloV4 model are shown in table 

1 below. 

Table 1: YoloV4 result summary 

 3000 

iterations 

6000 

iterations 

Average Precision (ap) 93.74% 83.88% 

True Positive (TP) 88 88 

False Positive (FP)  6 10 

False Negative (FN)  11 11 

Precision 0.94 @C =0.25 0.90 @C =0.25 

Recall  0.89 0.89 

Average IoU  0.91 0.89 

 

Tracking the key metric of recall and precision it can be inferred from table that the model 

performed best with 3000 iterations showing high precision of 93.7% and a recall value of 89%. 

However, when the number of iterations are increased, the model is overfitting on the training 

dataset as the model’s precision reduces significantly. While the YoloV4 algorithm shows 

promising results, it failed to provide a very high recall value which is required for the project as 

any missed True positive frames would require manual inspection of the videos which would 

defeat the purpose. Figure 5 shows some of the correct classification by the Yolo Algorithm. 

 

Figure 5: YOLO V4 results examples 
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Figure 6: YoloV4 training loss graph 

Classification 

Deep Convolution Neural Network. 

While YoloV4 was able to show promising results, it did not show high recall value which led to 

exploring other alternatives such as using state of the art deep convolutional neural networks 

(CNN) such as VGG-16 for the purpose of classifications.  

In the next experiment a modified VGG-16 model was used for image classification, where 1400 

images of anomalies and normal frames of each were selected from the combination of dataset 2 

and dataset 3. The model was trained for 100 epochs as shown in figure 7 below. 

 

Figure 7: VGG-16 Training/Validation accuracy and loss graphs 

 

It can be observed that the training loss for training set decreased while the validation loss for 

the model increased and kept fluctuating. Additionally, the training accuracy of the model was 

close to 1 for the training set while the model’s validation set accuracy is not very high. 
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However, testing the model on the test dataset the model misclassified all the anomalies as 

normal frames. Additional experiments were used with regularization methods such as using 

dropout for neural network nodes and batch normalization for convolutional neural network 

which also failed to resolve the problem. 

Additionally, looking at the GradCAM++ visualization of the VGG-16 trained detector shown in 

figure 16 below, it could be observed that the model is able to identify the anomalies, However, 

due to deep convolutions, the details of anomalies might be lost or other bright spots due to 

background noise are contributing misclassification of anomalies.  

 

Figure 8: GradCAM++ Visualization of  VGG-16 network. Left: normal frame; right: Anomaly frame 

One Class Convolution Neural Network 
In addition to using classification network experiment tried above one class convolution 

network for anomaly detection was used as described in [2]. In this experiment the model is 

trained only on normal frames (35,000+frames). The model as described in literature review 

adds gaussian noise to the feature extractor’s output and concatenate the noise images with the 

feature extractor output. However, this method was not able to learn and classify the anomalous 

images correctly leading to very low precision and recall value, hence the algorithm was not 

tested any further. The feature extractor used for this algorithm is VGG-16. 

AutoEncoder 
Autoencoders have shown great potential in anomaly detection especially detecting anomalies in 

still camera surveillance, therefore, normal convolutional autoencoders and robust 

convolutional autoencoders are explored as part of the experiment in building an anomaly 

detector.  

Normal AutoEncoder 
Normal autoencoder is trained with all the normal frames to learn all the normal features of the 

power rail. The concept behind the autoencoder is that the reconstruction loss of normal frames 

will be significantly lower than the anomalous frames. Shallow and deep convolutional auto 

encoders were also explored for this project. As shown in the figures 9 the original and 

reconstruction images for shallow and deep convolutional autoencoders. 
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Figure 9: AutoEncoder output visualization left: Shallow & right: Deep 

The shallow autoencoder was trained for 100 epochs and deeper autoencoder was trained for 50 

epochs with normal frames from dataset 3. However, shallow autoencoders showed the best 

results. Looking at the evaluation metrics in table 2 below for shallow encoder.  

Table 2: Shallow AutoEncoder Result Metrics 

Precision Recall 

47% 76% 

 

The encoder is able to recall several anomalous frames, however, it is not able to differentiate 

between several normal frames from anomalous frames giving us very low precision. Therefore, 

autoencoder was not selected as a viable model for anomaly detection for power rails alone. 

Robust Convolutional AutoEncoder 

For the second part of the experiment, a Robust Convolutional Autoencoder [4] with neural 

networks in the middle was used for anomaly detection. The model was trained for 100 epochs 

with all normal frames from dataset 3, the results are tabulated in table 3. 

Table 3: Robust AutoEncoder Result Metrics 

Precision Recall 

51% 88% 

 

Comparing robust autoencoder results to normal autoencoder results it could be observed that 

recall value and precision of the model increased for robust autoencoder. Recall values increased 

significantly while precision is still around 50% which is less than what is acceptable for the 

project.  

While auto encoders show better results for recall they fail in precision, therefore, should not be 

used individually as an anomaly detection model. 

Anomaly Algorithm 

Isolation forest and one class SVM are two algorithms that are trained on normal images. This 

allows the algorithm to detect anomalous datapoint as discussed in literature review. To work 

with high dimensional image dataset, all the images were passed through VGG-16 model for 
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feature extractors through the convolution layers with the last convolution layer being global 

average pooling. This allows the data to be reduced to lower dimension from 224x224x1 to 

512x1x1). Please note the images are only passed through convolution layers and the neural 

network portion of the model is not used.  

Two different pretrained VGG-16 feature extractors were used with Isolation Forest and One 

Class SVM for experimentation purposes. The first VGG-16 network was pretrained on 

ImageNet dataset and transfer learning was used to extract features on the TTC power rail 

dataset. The second VGG-16 network was trained on TTC power rail dataset from the 

classification task (discussed above). The results for both cases are tabulated and discussed 

below. 

Isolation Forest 
Table 4: Isolation Forest Result Metrics table 

 Pretrained on ImageNet 

dataset 
Pretrained on TTC Dataset 

Iteration Precision Recall Precision Recall 

1 51% 95% 52% 100% 

2 76% 49% 64% 94% 

3   71% 81% 

 

From table 4 it can be inferred that the VGG-16 model pipeline that was trained on TTC image 

dataset showed best results with a recall value of 94% and a precision value of 64%. Though the 

recall value is significantly higher than the autoencoders that were discussed, it can be observed 

that model has a very low precision in classifying normal frames and anomalies correctly. The 

hyperparameters selected for the algorithms to give best results were found using grid search.  

One Class Support Vector Machine (OC-SVM) 
Table 5: One Class SVM Result Metrics  Table 

 
Pretrained on ImageNet dataset Pretrained on TTC Dataset 

Iteration Precision Recall Precision Recall 

1 44% 99% 53% 100% 

2 70% 68% 61% 93% 

 

Similar to Isolation Forest it can be seen from table 5 that OC-SVM works best with VGG-16 

model that was pretrained using TTC power rail dataset. While the OC-SVM is able to provide a 

recall value of 93%, the lower precision value shows that the model is not able to identify normal 

data points correctly. This could be due to the extra information in an image present around the 

power rail tracks and anomalies that are contributing to the prediction as most of the features in 

a normal and anomalous frame are same. Hence, making it harder for the detector to classify.   
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Conclusion and Future Work 
From different anomaly detection models tested in this project it can be observed that YOLOV4 

performed the best in providing a balance between recall (89%) and precision (93.7%) and 

should be explored more for improvement. The YoloV4 has shown improvement compared to 

predecessor experiment of using Faster RCNN and SSD networks. Therefore, YoloV4 network 

should be explored with cross validation and hyperparameter tuning.  

Isolation Forest and One Class SVM have shown promising results in recalling all the anomalies, 

however, they lack in precision. An issue encountered here was the loss of information in deeper 

convolution of VGG network, the effects of which were also seen in classification experiment 

where all anomalies were misclassified. A way to improve the Isolation forest and OC-SVM 

algorithm is by using a shallower feature extractor with a way of passing information of 

anomalies to the prediction stage. Newer more complex networks can be developed along with 

Isolation Forest or OC-SVM to identify anomalies in the Images.  

Additionally, autoencoders showed promising results, however, due to moving camera along the 

track it was hard for the autoencoder to recreate a lot of the normal frames properly. Increasing 

training time and experimenting with different network design with shallow encoders plus 

decoders could help resolve this issue.  

While the end goal of the project is to have a recall value of 1, however, since each anomaly stays 

in video for 10-20 frames, the recall value goal can be set slightly lower if a fixed number of 

minimum frames per anomaly are identified by the model. Having a perfect recall with high 

precision requires an excellent model which is trained and optimized for large and consistent 

datasets. Line 3 has most of the track elevated, different weather conditions cause the images to 

change; sun being at different angles reflect from power rail and shines into the camera which 

generates noise in the images. Additionally, different light settings effect image quality as well as 

different time of day can cause track to heat up or cool down. Designing a model with the limited 

dataset is a challenge and getting more data is currently out of scope of the project. A final 

model for deployment should allow for changing environment during the day and season.  

The summer dataset though reviewed and labelled, was not used during experimentation due to 

different weather conditions resulting in a dataset that is different from the winter dataset. To 

use different datasets (summer set), domain adaptation techniques should be applied to the 

model to incorporate summer videos.  

A recommendation for the future is to explore YoloV4 by modifying the underlying architecture 

of the model to improve recall and accuracy along with cross validation. Additional anomalies 

created using photoshop can also be incorporated for training to increase the dataset size and 

improving the detector. Changing filters and hyperparameters for YoloV4 shall also be explored 

for improved performance and pushing precision and recall to above 95%.   

An ensemble of the currently trained models should also be tested using bagging where the final 

classification result is detected based on average classification of each frame. This will allow the 

predictions to be averaged across all models and improve frame classification.  

Noise in many frames was a key issue found while reviewing many frames. Developing an 

algorithm that reviews classification of 2 frames before and after an anomaly is detected could 

solve this issue. While noise stays for few frames, anomalies stay for 10-25 frames. If 3 to 5 

consecutive frames are classified as anomalies, then the image can be classified as an anomaly in 
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those frames otherwise it can be classified as noise therefore a normal frame. This method could 

also help remove any misclassification and improve precision of the models.  

Several videos in the dataset were not pointing at the power rail or the power rail was not in the 

center of the frame. A mounting solution and a standardized method should be proposed to TTC 

to ensure the data is consistent in the future which could help improve developing better models 

and improve their performance metrics.  
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Predictive Maintenance of Hydroforming 

Equipment using Failure Analysis 
Sahil Nagpal 

Background 
The hydroforming process is a cold working forming process, which uses hydro pressure to shape 

metals into complex shapes. Hydroforming is often utilized, when the desired shape of a 

component is too complex to accurately manufacture using other forming operations. One 

example of such complex components are the side rails for engine subframes for the Automotive 

Industry. The subframe is an integral part of the chassis of the vehicle, as it has numerous 

attachment points to various other components, such as control arms. Therefore, it is paramount, 

that there are no defects present on the frame, as it can compromise the safety of the entire chassis. 

 

 

Figure 1: Hydroformed side rails of a subframe. 

There are certain components within the Hydroform presses, which if not replaced or repaired at 

regular intervals, have a direct correlation to the scrap being generated. Such components include, 

check valves, and piston seals. If any of these components fail, the Hydroform press will lose 

pressure, and begin to produce deformed parts.  
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The main reason these components malfunction is due to wear, and thus the thesis of this project 

is to use Failure Analysis to predict the likely timeframe that each component will need to be 

repaired or replaced. 

Analysis 
Currently, failure data for each component is available and stored in a MySQL database. The 

majority of the data is not censored, as the components are only replaced once absolute failure 

occurs. 

A framework was written in Python to access and manipulate the data stored in the MySQL 

database for any component. As an example, all data pertaining to the component “Check valve” 

was tabulated using this framework. This data can then be used in numerous Failure analysis 

techniques.  

 

Figure 2: Data extraction using Python 

Weibull Distribution 

As a first attempt, Weibull Distribution was used to determine if it can adequately be used to 

model the time to failure for each component. The steps taken to obtain the distribution 

parameters are shown below. Note, that this procedure was done for all individual components.  

1. Time to failures were sorted in ascending order. 

2. As the sample size is quite small, Bernard’s Approximation was used to calculate the 

Median Ranks of the failure data. [1] 

𝑩𝒆𝒓𝒏𝒂𝒓𝒅′𝒔 𝑨𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏: 𝑭(𝒕𝒊) =
𝒊−𝟎.𝟑

𝒏+𝟎.𝟒
  

3. The Reliability function of the two parameter Weibull Distribution is the following [2]: 

𝑹(𝑻) = 𝒆
−(

𝑻
𝜼

)
𝜷

 

Consequently, the CDF or Failure function of the two parameter Weibull Distribution is 

the following [3]:  

𝑭(𝑻) = 𝟏 − 𝒆
−(

𝑻
𝜼

)
𝜷
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The Failure function was linearized, by taking logs: 

𝐥𝐧 (𝒍𝒏 (
𝟏

𝟏 − 𝑭(𝑻)
)) = 𝜷(𝐥𝐧(𝑻)) − 𝜷𝐥𝐧 (𝜼) 

 𝒚 =  𝐥𝐧 (𝒍𝒏 (
𝟏

𝟏−𝑭(𝑻)
)) 

𝒙 =  𝐥𝐧(𝑻) 

4. The x, and y values were calculated using the above, and graphed. As can be seen from 

the below figure, the values can be modeled using a linear line, which indicates that the 

Weibull distribution is a good fit.  

 

Figure 3: Line was fit to the transformed data, indicating that a Weibull distribution is a good 

fit. 

The equation of the best fit line was determined to be: 𝒚 =  𝟎. 𝟕𝟗𝟎𝟖𝟏 𝒙 +  −𝟓. 𝟎𝟒𝟖𝟓𝟒  

5. The parameters of the Weibull distribution 𝜼 𝒂𝒏𝒅 𝜷 were calculated using the following 

equations: 

𝜷 =  𝒔𝒍𝒐𝒑𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝒇𝒊𝒕 𝒍𝒊𝒏𝒆 

𝜼 =  𝒆
𝒚𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕

𝜷  

 Figure below shows the Weibull curve overlaid the original failure data. 
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Figure 4: Weibull curve generated using the calculated Weibull Parameters.  

 

6. Finally, the probability of failure was calculated for each component over the next 2 

weeks (240 hours). This was done using conditional probability: 

𝑷( 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆 ≤ 𝑻 ≤ 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆 + 𝟐𝟒𝟎 𝑯𝒐𝒖𝒓𝒔 | 𝑻 > 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆)

=
𝑭(𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆 + 𝟐𝟒𝟎 𝑯𝒐𝒖𝒓𝒔) − 𝑭(𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆)

𝑹(𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑻𝒊𝒎𝒆)
 

Communication of Results 

Another important aspect of this project is to effectively communicate the results to the 

maintenance department. The process of communicating these results is as follows: 

1. With the use of python, data is exported to a csv file in the desired format, which 

includes all calculations, such as the Weibull parameters. This was set-up to be done 

automatically every 8 hours or end of every shift. 

 

2. Power BI is used to display the results in a dashboard (see figure 5). The key metrics 

which are chosen for display on the dashboard are the “Current Operational Time” and 

“Probability of Failure for the next 2 weeks”. 

 

3. Maintenance personnel, can then quickly get a high-level overview of which 

components are at a high risk of failure. This actionable insight can then be used 

schedule maintenance activities to replace the components before they wear, and 

cause downtime, or quality defects. 
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Figure 5: Power BI Dashboard. 

Next Steps 
In addition to using previous failure data, there is also opportunity to use real time sensor data, 

such as Intensifier Pressure, and Fluid volume, to determine the Remaining Useful life of the 

components. The proposed methodology is to model the remaining useful life of the check valves 

by monitoring the fluctuations in pressure and volume of fluid used for each hydroforming cycle 

over time. The hypothesis here is that as the check valves begin to wear out, there will be certain 

trends in the pressure and volume signatures which can provide insight into the remaining useful 

life of the valve. This investigation is ongoing, as sensors are still being installed, and the data 

pipeline is in the process of being built. As an added bonus of collecting this data, the pressure 

signatures, and volume could also be used to train a classification machine learning model, to 

predict whether the current part created may contain defects or not, which is also another concern. 

Conclusion 
In summary, the Weibull Distribution is doing an adequate job in modelling the failure times of 

Hydroforming components. With this insight, maintenance personnel can more strategically 

allocate their man power and replace components before they begin to cause defects or equipment 

downtime. The next step of the project is to investigate the use of Pressure and Volume as 

explanatory variables to aid in RUL estimations. 
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STNG Engine RUL Prediction 
Jeong Cheol Seok 

Problem Statement 
Data-driven techniques, especially artificially intelligence (AI) have been getting huge amount of 

attention in the manufacturing and production sector, due to their ability to model highly 

nonlinear, complex, and multi-dimensional systems. Tremendous researches of DL techniques 

have been started to be applied in machine health monitoring and on the Remaining Useful Life 

(RUL) prediction. Precise RUL prediction can significantly improve the reliability and operational 

safety, avoid fatal breakdown, and reduce cost overall. Thus, Cummins and its client, STNG, 

proposed a project on investigating the remaining useful life and predict failures in the N – 

timeframe of the engines that are used in the mining site. The project explores data-driven 

techniques for developing a RUL prediction model.  

Related Work 
There have been many state-of-the-art applying data driven approaches to the C-MAPSS Dataset 

for prediction of RUL [1].  

Huang et al. [2] implemented an MLP approach for modeling the remaining useful life of the 

laboratory-tested bearings and received a superior performance compared to the reliability-

based approaches. The ANN model developed took measurement values at present and previous 

as inputs and got the equipment life as percentage as output. 

Recurrent neural networks (RNN) are commonly used for problems involving time series data, 

because of their ability to process and pass information over time. The authors of [3] used multi-

layer LSTM followed by a feed forward neural network to map the features from LSTM to the 

predicted RUL.  

Convolutional neural networks are often used for dealing time series data due to their ability to 

model correlations in a temporal window. [4] proposed a deep learning CNN architecture that 

contain multiple CNN layers followed by a fully connector layers to improve the performance. 

To combine the advantages of LSTM and CNN, a hybrid architecture is proposed in [5], 

developing CNN layer and deep LSTM and a followed by a fully connected layer. 

Classical deep learning algorithms tend to encounter the vanishing/exploding gradient problem 

found in ANN with gradient-based learning methods and backpropagation. To overcome the 
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problem of vanishing gradient problem, a new residual CNN (ResCNN) model is proposed for 

RUL estimation in [6] 

Data 
The provided Dataset from STNG contains four different categories which are as follows: 

Table 7 - Provided Dataset Breakdowns 

Description Count 
In-Operation Engines  105 
Failed Engines 37 
Passed Engines 9 
Infant Mortality 7 

 

The in-operation engines represent engines that have not yet failed and are in-operation. Hence, 

these engines cannot be used to predict the RUL as the target variables are currently unknown. 

The failed engines represent engines that have failed before the service life of 18000 hours, and 

passed engines represent engines that have passed or operated over the service life of 18000 

hours. Lastly, the infant morality represents engines that have failed before the operational 

hours of 5000.  

For model development, the engines that could be used are “Failed Engines” as the target 

variable of RUL is known only for ones that have failed.  

Each sub-dataset contains total of 221 readings / features, however, most of the sensors and 

features such as bit signals, do not provide useful information for RUL prediction. The 24 

features are selected amongst the 221 readings. The selection methods include analyzing the 

correlation respect to time, feature importance using classifiers such as Random Forest and 

creating a threshold percentage of empty values. 

Proposed Methodology 
The methodology followed for the project is discussed using the different aspects. The overall 

approach is summarized below: 

a) Data Preparation 
The measurement data is complex and high dimensional. There are many features that have 

low variance which mean that they are ineffective against the performance. Features with a 

dataset variance lower than threshold have been removed. 

 

The measurement data showed great outliers such as spikes and noise. After analyzing the 

data, the spikes occurred randomly and does not have any relationship with the failure. 

Therefore, the filtering method using Z score threshold is used to eliminate the noises. 

 

The data is then normalized as this can help the model accelerate the convergence rate. The 

min-max normalization is used to convert the sensor data scale within the range of [0,1]. 

 

b) Target Variable 
Instead of predicting for Remaining Useful Life (RUL) directly, the model instead predicts for 

health index (HI) which is an RUL normalized into scale [0,1]. Since all engines show different 
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levels of degradation even at same remaining useful life, the health index or percentage 

reflects the actual state of the engine more than remaining useful life in hours. This can be 

formulated as follows: 

𝐻𝐼𝑖(𝑡) = 1 −  
𝑥𝑖

max(𝑥𝑖)
 (1) 

c) Metrics 
For evaluation of the proposed model, the commonly used, root mean squared error (RMSE) 

is used; however, in real life situation, the most important predictions are when the machines 

are at a critical state. Instead of evaluating the entire interval, the RMSE of prediction less 

than 0.25 and actual target variable less than 0.25 is used as evaluation. This evaluates the 

recall and precision for the machines at critical state of 25% health level. 

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑ (𝐻𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐻𝐼𝑝𝑟𝑒𝑑(𝑡)

𝑚

𝑖=1
)2  𝑓𝑜𝑟 𝐻𝐼𝑟𝑒𝑎𝑙 < 0.25  𝑜𝑟 𝐻𝐼𝑝𝑟𝑒𝑑 < 0.25 (2) 

 

d) Data Split for Training 
For development of the model, the dataset is initially split between train and test per engine. 

Afterwards, k-fold partition is applied on the train set and cross validation is applied to get 

the train and validation set for training.  

 

e) Ensemble Model Method 
Since the number of engine samples are relatively low, the variance error tends to be high. 

Depending on the test, train, and validation split, the model performance tends to fluctuate 

heavily. Hence, the k-fold ensemble is applied to combine the k homogeneous DL models, 

which help to improve prediction accuracy and reduce variance error. The ensemble is 

formulated as 𝐸𝑛𝑠𝑀 =
1

𝑘
∑ 𝑚𝑖. 

f) Model Training 

For neural network algorithm, the learning rate of 0.0001, epochs of 1000 with patience of 

100 is applied. Usually, due to small amount of data, the model learns before its full epoch and 

early stops. 

Model Result and Summary 
The custom RMSE of the developed ensembled models are summarized in Table 2. Most of the 

proposed architecture of the neural networks have been used from previous literatures. 

Table 8 - Result for each proposed model 

Description RMSE 
Random Forest 0.18730 
Support Vector Regression 0.17230 
Neural Nets [2] 0.16550 
Deep Neural Nets / MLP [2] 0.15826 
Stacked LSTM [3] 0.16590 
DCNN [4] 0.15550 
CNN – LSTM [5] 0.16190 
CNN ResNET [6] 0.16506 
MLP – LSTM – MLP [7] 0.14899 
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The best performing architecture is the MLP-LSTM-MLP. The LSTM networks address the issue 

of gradient vanishing / exploding problems; however, they do not have the capacity to handle 

complex feature processing. Conversely, MLP are well fitted to perform such a task. The idea of 

this architecture is to feed the raw inputs to the MLP before the LSTM layers. This allows the 

initial MLP layers to process and learn a good representation, while LSTM captures the 

dependencies in the time sequences. Afterwards, final MLP layer is added to predict the RUL 

from these temporally smoothed representations.  

 

Figure 12 - Architecture of the best performing model 

 

 

  

  
Figure 13 - Examples of RUL prediction for engine units from testing samples 

Next Steps 
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The next step is to develop ways to interpret the predictions and provide preventive plans. The 

current approach that is being worked on is defining the Health index threshold where the 

engine is determined to be in the critical stage as illustrated in Figure 3. When the model starts 

predicting the engines below the critical stage, the operators are suggested to have a thorough 

maintenance to analyze whether the machine is at critical stage and make preventive plans 

accordingly.  

 

Figure 14 - Diagram of the engine state in the cycle 

Ideally, we would like the HI threshold is closer to zero while achieving good performance and 

prediction. The steps for determining the HI thresholds are as follows: 

1. Iterate through failure thresholds from 0 – 1 

2. Convert the numerical health index (HI) to discrete classes using the threshold 

a. If 𝐻𝐼(𝑡) ≥ 𝐻𝐼𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑  predict 𝐻𝐼𝑐𝑙𝑎𝑠𝑠 = 0 

b. If 𝐻𝐼(𝑡) < 𝐻𝐼𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑 predict 𝐻𝐼𝑐𝑙𝑎𝑠𝑠 = 1 

3. Measure the average precision, recall, and F1 score for different critical threshold 

4. E.g., 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁
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NRC combustion signature analysis for freight 

fires 
Sophie Tian 

Introduction 
The Fire Safety Unit within the National Research Council Canada (NRC) is responsible for the 

research on increasing resilience to outdoor and infrastructure fires, developing fire safety 

technology, and applying computational technologies in fire safety. Currently, in response to 

freight transportation fire incidents, first responders survey the scene of the accident to identify 

potential hazardous materials present, and follows the Emergency Response Guidebook (ERG), 

which is a 400-page document, to determine the most appropriate mitigation strategy. Since 

first responders routinely confront unknown hazards that might explode or release toxins in 

response to ordinary fire extinguishers, the Fire Safety Unit in NRC is interested in developing 

an Artificial Intelligence (AI) enabled tool to provide decision making support for when an 

unlabeled freight is burning and the material it contains is unknown. In particular, this tool will 

assist first responders when they survey the scene of the accident by identifying the 

characteristics of the materials burning and determining the most the most appropriate 

mitigation strategy.   

In this work, we focus on the design of machine learning (ML) models to predict what type of 

material is burning based on combustion signatures collected from a Fourier-transform infrared 

spectroscopy (FTIR). The designed model will be employed as the decision-making module 

within the AI tool and will provide guidance to first responders in the appropriate mitigation 

strategies to take in a freight fire. 

Dataset  
Combustion gas signatures reveal what type of material is burning and how the combustion 

progresses. NRC has conducted 30 tests on 20 distinct materials to collect the combustion 

signature data. For each test, the material is burned within a cone calorimeter and the FTIR is 

used to detect the chemicals emitted. The FTIR is capable of detecting the concentration profiles 

of up to 100 different chemicals over time, creating time series profiles. For each test, the NRC 

provided binary hazard labels in five categories: flammability, toxicity, water extinguishable, 

corrosiveness, and oxidizing. Given this dataset, the goal of the designed ML is to correctly 

predict the five hazard labels, taking into consideration the small-sized dataset.  
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Related Work 
This section will outline previous works that leveraged the FTIR either for the analyses of 

combustion processes or for machine learning, highlighting the fact that machine learning 

techniques have not been applied in combustion sciences. I will then discuss the state-of-the-art 

algorithms in the realm of time series classification.  

Fourier-transform infrared spectroscopy (FTIR) is a technique that collects the infrared 

absorption spectrum of solid, liquid, or gas sample. In Speitel (2002), the FTIR analyzer was 

studied on its ability to accurately quantify a variety of gases during material combustion, and a 

reasonable agreement between combustion gases measured using a FTIR analyzer and the cone 

nondispersive infrared (NDIR) gas analyzers was found. This demonstrates that FTIR has the 

capability to accurately quantify the gases evolved from burning materials. 

FTIR spectroscopy has become one of the most common methods for the analysis of combustion 

data, among other methods such as mass spectrometry (MS), gas chromatography (GC), and 

thermogravimetric analysis (TGA). Sanchez et al. designed an online FTIR monitoring 

methodology to quantify the evolution profiles for NO,N2O and CO2 from char combustion, and 

found that it is especially advantageous to use FTIR for online monitoring of combustion since 

its running time for the evolution of the target gas was much lower than the duration of the 

combustion experiments (Sanchez et al., 2010). In addition to being used in isolation, FTIR and 

TGA have often been coupled together, named TG-FTIR, to analyze the characteristics of 

materials under pyrolysis and combustion. The advantage of TG-FTIR is that it allows the gases 

released during pyrolysis and before combustion to be analyzed (Sonnier et al., 2014; Bassilakis 

et al., 2001). Oudghiri et al. (2016) demonstrated that valuable qualitative information can be 

extracted using TG-FTIR on gaseous volatile species by analyzing marine sediment under 

pyrolysis and combustion. Similarly, Jiang et al. (2010) used TG-FTIR to qualitatively analyze 

urea-formaldehyde resin residue during pyrolysis and combustion. On the other hand, FTIR 

coupled with cone calorimetry is the preferred method to analyze the gaseous products evolved 

during a combustion process. The advantage of this method is that the cone calorimeter allows 

the heat release rate to be monitored in a controlled environment, and the FTIR analyzer allows 

the gas species emitted to be collected simultaneously. Kallonen (1990) used FTIR-cone 

calorimetry to measure seven gases evolved from burning PUR, PVC and wool carpet, and 

concluded that FTIR has comparable precision with online gas analyzers and may even 

outperform online specific gas analyzers due to overlapping impurities in the evolved effluents. 

Puente et al. (2016) leveraged this coupled technique to analyze how two types of fireproof 

pavements contribute to fire growth. Similarly, studies have been conducted using FTIR-cone 

calorimetry to analyze the thermal degradation behavior of fir wood (Batiot et al., 2014) and two 

types of plywood (Fateh et al., 2014). 

As demonstrated by the abundance of previous works, FTIR is capable of accurately detecting 

and quantifying a large number of the products evolved during material combustion and has 

proved to be a useful tool for analyzing combustion data. In addition, since the spectral data 

obtained from an FTIR analyzer produces unique fingerprints of the sample materials (Titus et 

al., 2019), FTIR is well-suited to collect data for machine learning models where patterns and 

structures are expected to exist within the data. However, previous works were mainly focused 

on the qualitative assessment of materials under combustion, and to the best of our knowledge, 

only one previous work has attempted to analyze combustion data collected using FTIR in a 

data-driven approach. This work by Chen et al. used data from an FTIR analyzer capable of 

detecting the concentrations of 18 gas species to train an artificial neural network (ANN) to 
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classify the input data as either flaming fire, smoldering fire, or nuisance. The training data was 

composed of repeated tests on eight different materials or chemical compounds, and the 

validation data came from fire and nonfire cases of materials not observed in the training set 

(Chen et al., 2000). Using this dataset, the trained three-layer ANN correctly predicted 96% of 

the 248 test cases, demonstrating the feasibility of using FTIR data to detect fires (Chen et al., 

2000). Aside from this work, there has not been any other machine learning algorithm 

developed to make classification decisions using FTIR analyzers on combustion processes. 

Although machine learning has yet to be adopted as a candidate method in the analyses of 

combustion processes, it has been gradually introduced into and increasingly used in the field of 

fire sciences, especially in fire detection. In a comprehensive review of chemical-based indoor 

fire detection systems and associated algorithms, Fonollosa et al. identified that chemical gas 

sensors can improve fire sensitivity and early detection, but they suffer from a high rate of false 

alarms. They suggested that pattern recognition algorithms is the only path to improve false 

alarm immunity and cited numerous works that utilized machine learning techniques such as 

ANNs, K-nearest-neighbors (KNN) and decision trees to decrease the chances of false alarms 

(Fonollosa et al., 2018). However, in their discussion of gas sensors for combustion products, 

Fonollosa et al. only discussed the use of chemical sensor components, namely electrochemical 

cells, metal oxide sensors (MOX), and non-dispersive infrared cells (NDIR), for fire detection, 

and explicitly excluded the FTIR analyzer from this discussion without providing rationale for 

this choice. This suggests that there is a gap in our understanding of how FTIR analyzers 

compare to chemical sensor components in fire detection. These chemical gas sensors are 

similar to FTIR analyzers since they are both used to detect and to quantify target gases, and 

both take measurements over time. However, the FTIR analyzer has the advantage of being able 

to detect and collect the signatures of a variety of gases simultaneously, while typically an array 

of chemical sensor components need to be manually selected and assembled together to 

measure the target gases. Nevertheless, both tools produce multivariate, time series data. As a 

result, machine learning models that have been demonstrated to work well for gas sensor data 

should also work well for FTIR data. In the field of fire detection using images, Park et al. 

proposed a fire detection system incorporating a deep neural network for time series sensor data 

analysis as well as a convolutional neural network (CNN) for fire detection in images among 

other multi-functional components. Overall, machine learning techniques have become 

increasingly recognized in the area of fire detection, using either time series data or image data. 

In a broader context, machine learning techniques have been widely adopted to the 

classification of gases using data collected from gas sensors. One particular type of gas sensor 

named the electronic nose (E-nose), typically developed using metal oxide semiconductor 

(MOS) sensors or MOX sensors, has utilized machine learning techniques quite extensively. In a 

review of smart gas sensing technologies, Feng et al. outlined and compared various smart gas 

sensor arrays, signal processing methods and gas pattern recognition algorithms including SVM, 

KNN and ANNs. It was highlighted that machine learning now plays a key role not only in 

making gas classification decisions but also in its ability to adapt for sensor drifts, which 

alleviates the need to manually manipulate the signals captured by the gas sensors (Feng et al., 

2019). Earlier works on gas classification using E-Nose data mostly leveraged traditional 

machine learning techniques such as support vector machines (SVM), for example, to 

discriminate between two pure gases and their mixture gases (Khalaf et al., 2008), and to 

classify six indoor air contaminants using a hybrid approach combining an SVM and fisher 

linear discrimination analysis (FLDA) (Zhang et al., 2012). In recent years, as neural network 

proved to be universal function approximators, gas classification also began to adopt this 
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approach, replacing traditional approaches. For example, Raja Kumar et al. applied a five-layer 

ANN to detect pollutant gases measured using an E-nose, and demonstrated that its 

performance in terms of accuracy, sensitivity and specificity were all better than a trained SVM 

and a Naive Bayes classifier. However, since gas classification uses time series as input data, a 

more intuitive model to use is a CNN, which employs convolutional kernels to reduce the 

number of trainable parameters in the model and also to detect the same feature at different 

time points within a time series. In (Peng et al., 2018), a deep-CNN model named GasNet with 

up to 38 layers was proposed to classify four types of gases using data from eight MOS sensors, 

and this model significantly outperformed a trained SVM and ANN. In (Zhao et al., 2019), a one-

dimensional deep CNN named 1D-DCNN was proposed to classify three pure gases and two 

binary mixture gases. The 1D-DCNN model was able to automatically extract important features 

from the data through convolutional kernels, and it significantly outperformed the benchmarks 

which are a SVM, a KNN, an ANN and a random forest (RF) (Zhao et al., 2019). Another idea is 

to apply existing CNN architectures such as VGG and ResNet to gas classification as 

demonstrated in (Han et al., 2019), however such deep architectures would require a large 

amount of training data, which is often difficult to obtain in gas classification. Since the field of 

gas classification using E-nose data gradually favored CNN architectures, it is natural to 

approach the classification task using combustion data measured by an FTIR via CNNs as well. 

As previously discussed, gas classification typically deals with multivariate time series data. A 

simple way to account for the temporal information is to leverage a CNN-based architecture as 

demonstrated by Peng et al. (2018); Zhao et al. (2019); Han et al. (2019). This type of approach 

is analogous to using 2dimensional CNNs to capture the spatial relationship or objects in 

computer vision tasks and is much more efficient than training traditional feed-forward ANNs 

due to their weight sharing property. Another research area for consideration is research on the 

time series classification task itself, which focuses on developing algorithms leveraging the 

temporal information, and much work has gone into algorithmic development and comparison. 

A recent paper by Ruiz et al. compared state-of-the-art multivariate time series classification 

(MTSC) methods on 26 equal-length time series datasets, and cited a model named ROCKET, 

developed by Dempster et al., as the top performing method and the recommended starting 

point for benchmarking in future research. ROCKET leverages a large number of randomly 

generated convolutional kernels to capture the temporal features within the time series, and 

trains a linear classifier using the feature maps obtained from the random kernels to make the 

classification decisions Dempster et al. (2019). This method is extremely scalable and at the 

same time offers the same level of performance compared to other state-of-the-art methods, as 

shown in (Ruiz et al., 2021). Even though this is not a CNN-based method, which learns the 

weights of the convolutional kernels, it is evident that there is a theme of using convolutional 

kernels to perform classification on multivariate time series data. As a result, a CNN-based 

method or ROCKET could be a great starting point for our classification task of using FTIR 

combustion data to classify the burning materials. 

Anticipated outcomes 
The proposed tool addresses the safety of freight transportation by providing a solution that can 

be deployed easily to freight fires and by allowing data-driven decisions to be made given real-

time information. It reduces the risks to first responders by identifying possible hazardous 

materials present based on combustion signatures collected at the scene and by providing 

decision-making support to first responders in determining the most effective mitigation 

measures.  



109 
 

Conclusions and future work 
This report introduces the combustion signature analysis project in collaboration with the Fire 

Safety Unit of NRC, including the background and objectives of the project, and a literature 

review on related fields. Future work includes designing ML models to classify the combustion 

signature data and incorporating the model into the AI decision making module. 
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Machine Learning for Process Monitoring and 

Control in Additive Manufacturing 
Katie Xu 

Introduction 
Additive manufacturing, also known as 3D printing, are fabrication processes where 3D objects 

are built up layer-by-layer. Fused deposition modeling (FDM) is a type of additive 

manufacturing where layers are formed by melting a thermoplastic material and depositing it in 

the desired locations where it solidifies and becomes part of the object. The goal of this project is 

to develop a closed loop system to monitor and control the quality of parts made using a FDM 

3D printer. This project is in collaboration with Professor Zou and his students from the 

Material Science and Engineering department. 

Additive manufacturing processes have important advantages for applications in industrial 

manufacturing. In particular, the ability to make objects with complex geometries which may be 

difficult or impossible to make with other processes, reduced waste material compared to 

traditional machining, and lower tooling costs compared to casting and moulding processes. 

These properties are advantageous for creating complex or custom parts that are needed in 

relatively small quantities. Unfortunately, there remain challenges which limit the current 

practicality of additive manufacturing in industry. Parameter search is time consuming because 

there is a large number of parameters to be found and it is generally done through trial and 

error. Moreover, optimal parameter values depend on factors such as the material being used 

and the part geometry, so in the worst case the parameter search process must be repeated for 

each unique part. Additionally, even with a good set of parameters, external disturbances can 

result in inconsistent part quality and high rejection rates [1]. Thus, there is a need for closed-

loop process monitoring and parameter adjustment. This document summarizes recent work 

towards developing an approach to building such a system. 

System overview 
The overall goal is to build a closed-loop FDM printing system as outlined in Figure 15. To 

summarize, the proposed system would function as follows. First, the user would initiate the 

process by setting the initial parameters. Then, after printing each layer an image of the layer 

would be captured to observe the progress of the process. Porosity and surface roughness of the 

newly printed layer would be estimated the images, and used to predict the tensile strength of 
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the final part. Finally, process parameters would be adjusted based on the observed 

porosity/surface roughness and predicted strength.  

Porosity and surface roughness were chosen as indicators of tensile strength because porosity 

measures the existence of voids within a layer and surface roughness is related to the formation 

of voids between layers. The existence of such internal voids can be expected to weaken the 

printed part because it reduces the load bearing area and creates areas of high stress 

concentration. 

 

Figure 15: System Overview 

Based on this outline, the three main modules of the system which need to be developed 

(excluding the physical system) are: 

1. Image analysis 

a. From an image, estimate the porosity of the layer 

b. From an image, estimate the surface roughness of the layer 

2. Tensile strength model 

a. From porosity and surface roughness estimates, predict the tensile strength of 

the final part 

3. Controller 

a. Based on porosity, surface roughness, and predicted tensile strength, choose 

appropriate parameter adjustments to improve tensile strength of the final part 

Image analysis 

Porosity 

Porosity in the context of this project can be defined as the percentage area of a layer which is 

taken up by pores (unintentional voids or gaps between adjacent lines of extruded filament). 

Given a top-down image of a layer, it is possible to see such voids. Quantifying the porosity then 

can be done by segmenting the image into sections which are pores and sections which are not, 

and then computing the ratio of the areas. Thus, porosity estimation can be addressed as a 

semantic segmentation problem.  

UNet and DeepLab v3 are two state of the art convolutional neural network (CNN) architectures 

designed for semantic segmentation. UNet [2] is characterized by convolutional layers which 

reduce then increase the size of the feature map, and skip connections between earlier and later 

layers to preserve fine-grained feature information. DeepLab v3 [3] is the third version of their 

model which is characterized by the use of atrous convolutions to explicitly control the scale of 

the features being extracted.  

CNNs like UNet and DeepLab v3 generate pixel-wise predictions without explicit spatial 

constraints, and thus the predictions can be noisy as a result. Conditional random fields (CRF) 

are undirected graphs which can be used to encode spatial relationships and long-range 

interactions between pixels. They can be applied on top a CNN or other classifier to improve the 

final predictions. This was used in previous versions of the DeepLab model for improved results 
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parameters 

Print a layer 

and capture 
an image 

Estimate porosity and 

surface roughness of 

layer from image 

Adjust parameters to with 

the goal of improving 
tensile strength 

Predict tensile 

strength of 
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[4, 5]. However, a major drawback which limits the practicality of CRFs is inefficient inference. 

This must be done iteratively, unlike the straight-forward forward pass of a CNN.  

Texture analysis  
Surface roughness can be quantified measuring the profile of the surface and computing 

statistics such as average deviation from the mean or a similar quantity. However, measuring 

the surface profile can be difficult and requires specialized equipment. As a result, it may not be 

practical to collect enough labelled data to successfully train a deep CNN on raw image data. 

Instead, a possible approach is to compute low-level texture features from images to use as 

proxies for surface roughness. For example, the variance or entropy of pixel intensities present 

in the image provides information on the variability of pixel intensities. Statistics computed 

from a grey level co-occurrence matrix can provide information on positional relationships 

between pixels of similar grey values. Other features can provide information on the frequency 

content or geometric properties. [6] 

Tensile strength model 
This is the topic of an ongoing project with two undergraduate summer students. The goal is to 

characterize the relationship between the porosity/surface roughness of individual layers and 

the tensile strength of the final part. That is, we want to build a predictive model from 

porosity/surface roughness to tensile strength, and to answer the following research questions: 

• How strong is the correlation to tensile strength for each of porosity and surface 
roughness? 

• In order to predict tensile strength, it necessary to observe both? Is it sufficient?  

• Are porosity and/or roughness of certain layers more influential than others? 

Controller 
The planned approach for developing a controller to close the loop is as follows: 

1. Build a virtual model of the 3D printer 

2. Use virtual model to train an agent using reinforcement learning  

3. Transfer to physical system 

The specific details of how to accomplish these steps will be addressed moving forward. 
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