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Executive summary 
Chi-Guhn Lee, C-MORE Director 

Introduction 

 

The following report summarizes work undertaken between C-MORE and collaborating 
companies and notes the major changes at C-MORE since the meeting in December 2018. 
 
As Director, I have continued to expand C-MORE’s service and research portfolio by 
ensuring the engagement of consortium members, driving the research program in new 
directions, attracting new researchers, and expanding the Consortium. I am happy to say 
we have welcomed a new Consortium member: Department of National Defence.  
 
This year, one of C-MORE’s special activities included a professional development session 
co-hosted with PEMAC’s GTA chapter. This was an opportunity to share our broad 
research area with maintenance and asset management professionals. Several contacts 
demonstrated interest in membership with C-MORE as a result of this event. Another 
important undertaking was the submission of an NSERC Collaborative Research and 
Development (CRD) grant, with Kinross and Titan as partners. This grant leverages 
industry funds with federal government funding. The title of this proposal is 
“Maintenance and reliability in the face of uncertain data.” 
 
Other special activities for C-MORE included the signing of a memorandum of 
understanding with TAMS, a new research group at Inha University in Korea, and hosting 
a three-day course in asset management, “Asset Management 4.0,” immediately before 
the Progress Meeting. 
 
At the same time, I have continued to lead a team of research graduate students doing 
research in reinforcement learning, learning in non-stationary environment, degradation 
modelling, and digital twin. Since the last consortium meeting in December, we have 
published at NeurIPS 2018 and in European Journal of Operational Research. I have 
been busy outside Toronto as well, speaking at a research retreat held by Fujitsu Co-
Creation Lab in March 2019 and visiting LG CNS headquarter in Seoul in February 2019 
and Teck in BC in May 2019. 
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In the following sections, I give more details about the work of the individual members of 
the C-MORE team and outline our projects with Consortium members.  
  
The C-MORE team 
 
Janet Lam, Assistant Director 
In the first half of 2019, Janet continued working on various projects with all member 
companies through direct research as well as student supervision. In April, she delivered 
a two-day training course on EXAKT to member company Kinross. On May 9, she 
presented a talk, “A neural network approach to equipment health prediction using free-
form comments,” at the Reliability Conference in Seattle, WA. In June, she was one of five 
instructors in the Asset Management 4.0 course hosted by C-MORE. 
 
Andrew K. S. Jardine, Professor Emeritus 
Andrew Jardine has continued to make a valuable contribution to maintenance courses 
offered to professionals and students around the world, including a graduate course and 
an industry course, a guest lecture at the University of Toronto, and a training course at a 
Canadian manufacturing company. Andrew has also continued to work with companies. 
On April 5, he visited BrightOrder Inc. to discuss extensions to their Fleet Management 
software. Andrew is currently working with Dr. Albert Tsang of Hong Kong Polytechnic 
University and Dr. Sharareh Taghipour of Ryerson University to finalize the 3rd edition 
of the textbook Maintenance, Replacement and Reliability: Theory and Applications. 
Since December 2018, Andrew has been named to a number of committees and boards. 
He has been appointed as member of the International Editorial Advisory Committee of 
the West Indian Journal of Engineering, and an Advisory Board Member for the 
International Maintenance Association (IMA), presently working on “A Global Study of 
Current Approaches to Maintenance Education and Training.” On March 12 and 19 and 
April 24, he attended meetings of the Awards Committee for the Plant Engineering and 
Maintenance Association of Canada (PEMAC). On March 30, Andrew was inducted as 
Fellow of the Engineering Institute of Canada (FEIC), the first member of Canadian 
Region of the Institute of Industrial and Systems Engineering (IISE) to be elected FEIC. 
 
Dragan Banjevic, C-MORE Consultant 
In his work with C-MORE, Dragan collaborated with Janet Lam on projects with 
Consortium members, notably with Kinross Gold and TTC, and to some extent with MOD 
and DND.  He also provided help in some projects with C-MORE students. 
 
Sharareh Taghipour, Ryerson, External Collaborator 
Sharareh is currently supervising/co-supervising two postdoctoral fellows, seven PhD 
students, two Master’s students, and two undergraduate. One of her PhD and two of her 
Master’s students recently completed their programs. Sharareh finished a collaborative 
project entitled “Model recipes for incoming workload prediction” with Intelerad Medical 
Systems. She also received an Early Researcher Award from the Ministry of Economic 
Development, Job Creation and Trade for a project entitled “Intelligent predictive 
maintenance and production scheduling for Industry 4.0.” Her John R. Evans Leaders 
Fund was approved by Canada Foundation for Innovation for “Industry 4.0 Smart Factory 
System.” She is serving on a number of committees at Ryerson University, including the 
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Department Hiring Committee (DHC), Strategic Research Plan (SRP) Steering 
Committee, and Faculty Awards Committee. 
 
Scott Sanner, University of Toronto 
Scott has been involved in a range of applied projects covering network and power grid 
security, predictive modelling for residential HVAC, prediction of hospital readmission 
for Sunnybrook Hospital, uses of social media in financial applications, and a number of 
projects involving recommender systems for eCommerce applications.  Scott also 
continues to engage in fundamental research on machine learning and data mining (paper 
accepted at SDM 2019), reinforcement learning (paper accepted at UAI 2019), deep 
learning (paper accepted at AAAI 2019), constraint satisfaction (a best paper award at 
CPAIOR 2018 and a new paper accepted to CPAIOR 2019), recommendation systems 
(two papers accepted to SIGIR 2019) adaptive user interfaces (paper accepted to CHIIR 
2019), and sequential decision-making in support of the aforementioned applications. 
 
Fae Azhari, University of Toronto 
Two new people have joined Fae’s research group, making a total of one post-doctoral 
fellow, four PhDs, four MASc students, and one undergraduate. Her projects include: 
complex naval asset management using sensor data, optimizing the fabrication and 
performance of multifunctional cementitious composites, the application of digital image 
correlation for effective non-contact strain measurements in SHM, the development of a 
sensing device for monitoring lateral soil pressure, the application of fibre optic sensors 
in torsional vibration monitoring, the development of a sensing system for gait analysis, 
bridge scour monitoring, and condition-based maintenance of bridges. Fae’s student 
Scott Koshman attended RAMS and Niloofar Heirani attended IMABM, where both 
presented their work. Fae has been meeting with various people in the industry about 
research opportunities. 
 
Ali Zuashkiani, Director of Educational Programs 
Ali has been providing consulting services to various industries, such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially active 
working with a major utility company (Marafiq) to improve its Operation and 
Maintenance business processes and procedures. Since December, Ali has delivered 
courses in asset management, reliability centred maintenance, and spare parts 
management in Abu Dhabi, Kuwait, Dubai, and Toronto. He is also developing a five-day 
comprehensive spare parts management course with Don Barry and Steve Sinkoff. Ali was 
a session chair at the Maintenance 4.0 Digitalization Forum at the Reliability Conference 
and received CMRP and CRL designations. 
 
C-MORE students and postdoctoral fellows 
 
Li Yang, postdoctoral fellow 
In the last six months, Li has made progress on the following three research topics. First, 
opportunistic maintenance for wind farms considering weather impacts; this work 
comprehensively investigates the impacts of wind conditions on system reliability, power 
generation, positive impact on maintenance and negative impact on maintenance 
(maintenance delays). Second, the development of a hybrid prognostic framework to 
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predict remaining useful lifetime; this framework innovatively incorporates a recurrent 
neutral network (RNN) and the Wiener-based degradation model to estimate model 
parameters of RUL. The project is in collaboration with Gaoyang. Third, a mission abort 
policy based on early-warning information; this work designs mission abort policies for 
typical mission-critical systems, such as UAV, submarines, nuclear devices and so on. The 
objective is to balance the trade-off between mission reliability and system survivability. 
Based on these, Li has authored six journal papers, including three accepted/published 
papers and three under review/revision 
 
Danish Anis, PhD student 
While Danish has been busy with coursework throughout this academic term, he has 
continued to make progress on digital twin for reliability. He has submitted an abstract 
to RAMS 2020 and one to the MIE graduate research symposium. He is currently working 
towards extending an LSTM-RNN technique to generate a probabilistic RUL prediction 
within a digital twin framework as a means of synchronization with changing operational 
states. In theory, an LSTM encoder-decoder (LSTM-ED) is used to train a neural network 
and reconstruct the sensor data input time-series corresponding to a healthy state. The 
resulting reconstruction error can be used to estimate health index (HI) training and 
testing sets. Using a time lag to record similarity between the HI curves, a weighted 
average of the final RUL estimation can thus be obtained and uncertainty can be 
quantified using Monte Carlo (MC) Simulation. This approach is being evaluated first on 
a publicly available engine degradation data set. 
 
Jing Janice Cao, EngSci thesis student 
Jing completed her undergraduate thesis on April 9. Her research project modelled the 
UKMOD procurement problem with an impairment factor, incorporating the investment 
amount and reward in the decision tree model with different impairment situations. She 
modelled the problem was modelled as a Markov decision process and developed a 
backward calculation for each decision and chance node. She simulated a 20-year period 
of impairment conditions were simulated and presented a distribution of optimal 
stopping year of investment  
 
Kuilin Chen, PhD student 
Kuilin is continuing his research on digital twin for reheat furnaces while a full-time 
employee at Arcelor Mittal Dofasco. He gave a talk at a PEMAC professional development 
event on March 21 and is presenting at the Progress Meeting. 
 
Michael Gimelfarb, PhD student 
Michael’s recent paper, “Epsilon-BMC: a Bayesian model combination approach to 
Epsilon-greedy exploration in model-free reinforcement learning," was accepted for the 
UAI 2019 conference and will be presented in July. A more detailed review of this work is 
included in the report. He is currently working on knowledge transfer in reinforcement 
learning using graph-structured data, Bayesian approaches, and hierarchical RL. 
 
Scott Koshman, PhD student 
In January, Scott presented at the Reliability and Maintainability Symposium (RAMS) 
“Incorporating condition monitoring for multi-faceted decisions” (co-authored with 
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Professor Azhari). The paper will be published in the pending IEEE conference 
proceedings.  At the same symposium, he participated in a breakout session with 
Department of Defense (USA) where they discussed developing the body of knowledge in 
reliability.  In April, he completed his requirements for PhD candidacy by passing his 
qualifying examination where he presented his research proposal “Resolving irregular 
data scenarios in equipment health monitoring decision support systems for complex 
naval platforms.” 
 
Gaoyang Li, visiting PhD student 
As Gaoyang wraps up his study abroad program at C-MORE, he is working on modelling 
degeneration through machine learning. He has developed a new integrating technique 
to fuse the stochastic process model with deep learning neural network. In this model, 
deep learning methods are used to learn the existing degeneration paths, and the 
stochastic process is employed to model the variability inside the data to get a confidence 
interval for the results provided by the deep learning model. The integrated method is 
expected to outperform the traditional stochastic process while maintaining the 
confidence interval of the prognosis results. 
 
Avi Sokol, PhD student 
As a flex-time PhD, Avi is developing a research project directly linked with his 
employment. His work is aimed at creating a decision support system to advise on the 
procurement of inventory; and pricing and sale. His initial project is an inventory problem 
for inventory valued at $3M in volume.  
 
Gary Wang, EngSci thesis student 
Gary completed his final year of undergraduate studies in Engineering Science: 
Mathematics, Statistics, and Finance Option. He has taken a position as a hedge fund 
analyst at Rosalind Advisers. He is also a co-founder of Team Flyhand at The 
Entrepreneurship Hatchery at the University of Toronto, where he is developing an 
application called Image-Cloud which uses its image-recognition capabilities to allow 
users to search relevant information through images rather than keywords. 
 
C-MORE activities with consortium members  
 
Defence Science and Technology Laboratory (DSTL) 
In this term, DSTL and C-MORE worked on a decision-making tool for long-term projects 
using utility as the variable. The problem is based on making long-term decisions that 
may be expensive to adapt in the future, using limited information that is available in the 
present. The project formed a part of Jing Cao’s thesis and will be presented at the June 
meeting. 
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Department of National Defence 
DND is our newest member company, joining in March 2019. The initial project is a 
condition-based project for propulsion diesel engines on the city-class ships. We are 
currently identifying failure modes and definitions to set up the project. 
 
Kinross 
Having settled on a hazard model, we incorporated cost information for preventive and 
corrective maintenance actions to finalize the decision model. By applying the decision 
model retroactively, we were able to assess that had the decision model been applied, 
several failures would have been prevented, and many PM actions would have been 
advised to continue running. 
 
Teck 
In May, C-MORE visited Teck’s Sparwood location to have a face-to-face meeting 
discussing potential areas for collaboration. A KPI-based physical availability model and 
a decision tool for mid-life evaluation were discussed, as well as possibilities for 
harnessing a hybrid degradation model with a Bayesian neural network. 
 
Toronto Transit Commission 
TTC wrapped up the NDT line-test project early in 2019. We are exploring options to 
create a scheduling tool that will implement the optimized line-test schedule. A new 
project was launched in May to discuss re-inspection intervals using the NDT inspection 
crew. This will be presented at the June meeting. 
 
C-MORE educational programs  
 
In a new venture, C-MORE offered a three-day course in asset management, Physical 
Asset Management 4.0, just before the June Progress meeting. Day 1 featured an 
introduction to asset management in the 21st century; day 2 focused on evidence-based 
asset management (EBAM), and day 3 dealt with machine learning.  
 
Conclusion 
 
As the executive summary makes clear, we have been busy at C-MORE, continuing some 
ongoing projects and starting new ones. I want to take this opportunity to thank C-MORE 
staff, students, collaborating faculty, and collaborating companies for their outstanding 
support of our mission.  
  
 
 

Chi-Guhn Lee 
June 2019 
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Visits and interactions with consortium members 
and others 

Jan 23, 2019  
Andrew Jardine was appointed a member of the International Editorial Advisory 
Committee of the West Indian Journal of Engineering for a three-year period (2019-
2021). 
 
Jan 28-31, 2019  
Sharareh Taghipour attended the Annual Reliability and Maintainability Symposium 
(RAMS) in Orlando, Florida. At this conference she presented two papers: “Maintenance 
Effectiveness Estimation from Observable Covariate Data with Applications to Railway 
Industry” and “Energy-Efficient Optimization of Flexible Job shop Scheduling and 
Preventive Maintenance." 
 
Feb 7, 2019 Kinross 
Dragan and Janet visited the Kinross Toronto office to finalize the hazard model and 
discuss how to determine appropriate costs for the decision model 
 
Feb 12, 2019  
Andrew was appointed Advisory Board Member, International Maintenance Association 
(IMA). 
 
Feb 19, 2019 Inha University 
Professor Hosang Jung from Inha University Asia Pacific School of Logistics visited C-
MORE to discuss a potential memorandum of understanding between the two research 
groups. 
 
Feb 22, 2019 Teck 
Alex Creagh, Kevin Hatch and Graeme Dillon had a call with C-MORE to discuss potential 
projects and our main areas of expertise. 
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Mar 7, 2019 TTC 
Dragan and Janet visited TTC’s Hillcrest office for a meeting with Aleks Urosevic, David 
Girodat, Mo Gaus, Jennifer Lu, Hossein Mohammadian, Mark Vella, and Horacio 
Werchow to wrap up the NDT line-test project and kick off the re-inspection project. 
 
Mar 9-10 & 23-24, 2019  
Andrew taught a graduate course at the University of the West Indies, Trinidad, titled: 
“Maintenance Analysis and Optimization.” 
 
Mar 12, 19, April 24, 2019  
Andrew attended meetings of the Awards Committee for the Plant Engineering and 
Maintenance Association of Canada (PEMAC) 
 
Mar 20, 2019                   Keolis 
Suzanne Manaigre and Chris White from Keolis visited C-MORE hiring undergraduate 
student interns for operations contracts for Kitchener-Waterloo light rail transit. 
 
Mar 21, 2019 PEMAC 
C-MORE and PEMAC co-hosted a professional development event at the University of 
Toronto campus. There were three presentations by C-MORE: Janet Lam, Chi-Guhn Lee, 
and PhD student Kuilin Chen. 
 
Mar 22, 2019 Shanghai BDO 
Chi-Guhn and Janet met with George Dai from the University of Toronto business 
development office to discuss strategies for making connections with businesses in 
Shanghai 
 
Mar 26, 2019  
Andrew co-taught University of the West Indies course for industry with Kishore Jaghroo 
titled: “Optimizing Maintenance and Reliability Systems in the Heavy Industries.” 
 
Mar 30, 2019  
Andrew was inducted as Fellow of the Engineering Institute of Canada (FEIC), the first 
member of Canadian Region of the Institute of Industrial and Systems Engineering (IISE) 
to be elected FEIC.   
 
Apr 4, 2019 DND 
C-MORE and DND had a conference call to discuss our first project in their membership. 
We discussed initial data requirements and established a set of milestones. 
 
April 4, 2019  
Andrew gave a guest lecture on “Application of Data Analytics to Engineering Asset 
Management” to undergraduate students of MIE 469: Reliability and Maintainability 
Engineering, taught by Dr. Janet Lam 
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April 5, 2019  
Andrew visited BrightOrder Inc. regarding extensions to their Fleet Management 
software. 
 
April 9, 2019  
Jing Janice Cao and Gary Wang gave their Engineering Science thesis final presentations. 
 
Apr 12, 2019   
Scott Koshman had his qualifying exam with committee members Professors Fae Azhari, 
Chi-Guhn Lee, and Scott Sanner. His thesis proposal was “Resolving Irregular Data 
Scenarios in Equipment Health Monitoring Decision Support Systems for Complex Naval 
Platforms.” 
 
Apr 17, 2019 Toronto Hydro 
Chi-Guhn and Janet visited Sushma Narisetty at the Toronto Hydro College Street 
location to provide a summary of collaboration over the years and suggest possibilities of 
continued collaboration. 
 
Apr 23, 2019 Cerrejón 
C-MORE and Murray Wiseman had a phone call with David Velandia of Cerrejón to 
discuss their ISO55000 asset management process report and how to implement the 
recommendations. 
 
Apr 30, 2019 DND 
Janet had a conference call with DND to discuss details of the data and to select a 
promising candidate for further study. The propulsion diesel engines were chosen. 
 
May 2, 2019  
Gaoyang Li gave a lecture on Bayesian deep learning to Dynamic Optimization 
Laboratory’s summer students. 
 
May 6-10, 2019  
Janet and Ali attended The Reliability Conference in Seattle. Ali served as a session chair 
in the Digitalization Forum track. Janet gave a talk entitled “A neural network approach 
to equipment health prediction using freeform comments.” 
 
May 7, 2019  
Andrew taught day one of a three-day education and training course to a Canadian 
manufacturing company on “Weibull Analysis and Extensions.” 
 
May 13, 2019  
Mike Gimelfarb’s paper entitled “Epsilon-BMC: A Bayesian Model Combination 
Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning" was 
accepted to UAI-2019 
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May 14, 2019 Teck 
Chi-Guhn and Janet visited Teck’s Sparwood location to discuss a range of potential 
projects for collaboration. 
 
May 16, 2019  
Mike Gimelfarb submitted an abstract to NeurIPS-2019 for a paper on knowledge transfer 
in reinforcement learning using graph-structured data. 
 
May 22, 2019 Linde 
Chi-Guhn and Janet attended the Trade Commissioner’s Service B2B meeting with Linde 
to demonstrate C-MORE’s value proposition. 
 
May 23, 2019            TTC 
Dragan and Janet visited TTC’s Dundas West location to present preliminary results on 
the re-inspection project and to probe the project’s objectives and decision criteria 
 
May 24-June 5, 2019  
Andrew held meetings with Dr. Albert Tsang of Hong Kong Polytechnic University and 
Dr. Sharareh Taghipour of Ryerson University to finalize the 3rd edition of the textbook 
Maintenance, Replacement and Reliability: Theory and Applications. 
 
May 28, 2019 DND 
Janet had a conference call with DND to discuss details of the propulsion diesel engine 
data and possibilities for distinguishing engine failures from minor corrective 
maintenance actions. 
 
May 29, 2019 Titan 
Chi-Guhn and Li Yang visited Titan’s Hangzhou offices to discuss the applications of 
machine learning for asset prognostics and condition-based maintenance. 
 
June 3-7, 2019  
Li Yang attended the 11th International Conference on Mathematical Methods in 
Reliability (MMR 2019) hold in Hong Kong. He gave a presentation titled “Operations 
and Maintenance of Wind Farms Incorporating Multiple Impacts of Wind Conditions” in 
the Preventive Maintenance track. The talk focused on an advanced opportunistic 
maintenance strategy incorporating both the positive and negative impacts of wind 
conditions. 
 
June 10-12, 2019  
C-MORE’s team delivered a three-day course in asset management to participants from 
Colombia, Korea, and Canada 
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C-MORE leadership activities 

Chi-Guhn Lee, Director 
 
Since December, Chi-Guhn has continued to lead a team of research graduate students 
doing research in reinforcement learning, learning in non-stationary environment, 
degradation modelling, and digital twin. He was invited as a speaker at a research retreat 
held by Fujitsu Co-Creation Lab in March 2019. He and his team have published at 
NeurIPS 2018 and in European Journal of Operational Research since the last 
consortium meeting. He visited LG CNS headquarter in Seoul in February 2019 and Teck 
in BC in May 2019. 
 
Janet Lam, Assistant Director 
 
In the first half of 2019, Janet continued on various projects with all member companies 
through direct research as well as student supervision. In April, she delivered a two-day 
training course on EXAKT to member company Kinross. On May 9, she presented a talk 
titled “A Neural Network Approach to Equipment Health Prediction Using Free-Form 
Comments” at The Reliability Conference in Seattle, WA. In June, she was one of five 
instructors in the Asset Management 4.0 course hosted by C-MORE. 
 
Andrew K. S. Jardine, Professor Emeritus 
 
Andrew Jardine has continued to make a valuable contribution to maintenance courses 
offered to professionals and students around the world, including a graduate course and 
an industry course, a guest lecture at the University of Toronto, and a training course at a 
Canadian manufacturing company. Andrew has also continued to work with companies. 
On April 5, he visited BrightOrder Inc. to discuss extensions to their Fleet Management 
software. Andrew is currently working with Dr. Albert Tsang of Hong Kong Polytechnic 
University and Dr. Sharareh Taghipour of Ryerson University to finalize the 3rd edition 
of the textbook Maintenance, Replacement and Reliability: Theory and Applications.  
 
Since December 2018, Andrew has been named to a number of committees and boards. 
He has been appointed as member of the International Editorial Advisory Committee of 
the West Indian Journal of Engineering, and an Advisory Board Member for the 
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International Maintenance Association (IMA), presently working on “A Global Study of 
Current Approaches to Maintenance Education and Training.” On March 12 and 19 and 
April 24, he attended meetings of the Awards Committee for the Plant Engineering and 
Maintenance Association of Canada (PEMAC). On March 30, Andrew was inducted as 
Fellow of the Engineering Institute of Canada (FEIC), the first member of Canadian 
Region of the Institute of Industrial and Systems Engineering (IISE) to be elected FEIC. 
 
Dragan Banjevic, C-MORE Consultant 
 
In his work with C-MORE Dragan collaborated mostly with Janet Lam on projects with 
consortium members, notably with Kinross Gold, and TTC, and to some extent with MOD 
and DND.  He also provided help in some projects with C-MORE students. 
 
Sharareh Taghipour, Ryerson, External Collaborator 
 
Sharareh is currently supervising/co-supervising 2 postdoctoral fellows, 7 PhD, 2 
Masters, and 2 undergraduate students. One of her PhD and two of her masters’ students 
recently completed their programs. Sharareh finished a collaborative project entitled 
“Model recipes for incoming workload prediction” with Intelerad Medical Systems. She 
also received an Early Researcher Awards from the Ministry of Economic Development, 
Job Creation and Trade for a project entitled “Intelligent predictive maintenance and 
production scheduling for Industry 4.0”. Her John R. Evans Leaders Fund was approved 
by Canada Foundation for Innovation for “Industry 4.0 Smart Factory System”. She is 
serving on a number of committees at Ryerson University, including the Department 
Hiring Committee (DHC), Strategic Research Plan (SRP) Steering Committee, and 
Faculty Awards Committee. 
 
Scott Sanner, University of Toronto 
 
Scott has been involved in a range of applied projects covering network and power grid 
security, predictive modeling for residential HVAC, prediction of hospital readmission for 
Sunnybrook hospital, uses of social media in financial applications, and a number of 
projects involving recommender systems for eCommerce applications.  Scott also 
continues to engage in fundamental research on machine learning and data mining (paper 
accepted at SDM 2019), reinforcement learning (paper accepted at UAI 2019), deep 
learning (paper accepted at AAAI 2019), constraint satisfaction (with a best paper award 
at CPAIOR 2018 and a new paper accepted to CPAIOR 2019), recommendation systems 
(two papers accepted to SIGIR 2019) adaptive user interfaces (paper accepted to CHIIR 
2019), and sequential decision-making in support of the aforementioned applications. 
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Fae Azhari, University of Toronto 
 
Two new people have joined Fae’s research group, making a total of 1 post-doctoral 
fellows, 4 PhDs, 4 MASc students, and 1 undergraduate. Her projects include: complex 
naval asset management using sensor data, optimizing the fabrication and performance 
of multifunctional cementitious composites, the application of digital image correlation 
for effective non-contact strain measurements in SHM, developing a sensing device for 
monitoring lateral soil pressure, the application of fibre optic sensors in torsional 
vibration monitoring, developing a sensing system for gait analysis, bridge scour 
monitoring, and condition-based maintenance of bridges. Fae’s student Scott Koshman 
attended RAMS and Niloofar Heirani attended IMABM, and presented their work. Fae 
has been meeting with various people in the industry regarding research opportunities. 
 
Ali Zuashkiani, Director of Educational Programs 
 
Ali has been providing consulting services to various industries, such as oil and gas, power 
generation and distribution, mining, and petrochemical. He has been especially active 
working with a major utility company (Marafiq) to improve its Operation and 
Maintenance business processes and procedures. Since December, Ali has delivered 
courses in asset management, reliability centred maintenance, and spare parts 
management in Abu Dhabi, Kuwait, Dubai, and Toronto. He is also developing a five-day 
comprehensive spare parts management course with Don Barry and Steve Sinkoff. Ali was 
a session chair at the Maintenance 4.0 Digitalization Forum at The Reliability Conference 
and received CMRP and CRL designations. 
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Overall project direction 
Janet Lam, Assistant Director 

Goals and retrospectives 
 
This section highlights the some of the main achievements in C-MORE for the period 
January 2019 – June 2019. This year, one of C-MORE’s special activities included a 
professional development session co-hosted with PEMAC’s GTA chapter. This was an 
opportunity to share our broad research area with maintenance and asset management 
professionals. Several contacts demonstrated interest in membership with C-MORE as a 
result of this event. 
 
An NSERC Collaborative Research and Development (CRD) grant was submitted with 
Kinross and Titan as partners. This grant leverages industry funds with federal 
government funding. The title of this proposal is Maintenance and reliability in the face 
of uncertain data. 
 
Other special activities for C-MORE includes the signing of a memorandum of 
understanding with TAMS, a new research group at Inha University in Korea, and hosting 
a three-day course in Asset Management 4.0 that immediately preceded the progress 
meeting. 
 
Activities 
 
Theoretical work 
 
This section on theoretical work is oriented toward students’ and postdoctoral fellows’ 
research topics. 
 

Name Activity 

Li Yang, postdoctoral 
fellow 

In the last 6 months, Li has made progress on the following 
three research topics:  
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Name Activity 

1) A hybrid prognostic framework to predict remaining useful 
lifetime. This framework innovatively incorporates 
recurrent neutral network (RNN) and Wiener-based 
degradation model to estimate model parameters of RUL. 
This project is in collaboration with Gaoyang; 

2) Opportunistic maintenance for wind farms considering 
weather impacts. This work comprehensively investigates 
the impacts of wind conditions on (i) system reliability, (ii) 
power generation, (iii) positive impact on maintenance 
(opportunistic maintenance) and (iv) negative impact on 
maintenance (maintenance delays); 

3) Mission abort policy based on early-warning information. 
This work designs mission abort policies for typical 
mission-critical systems, such as UAV, submarines, nuclear 
devices et al. The objective is to balance the trade-off 
between mission reliability and system survivability. 

Based on these, Li has authored six journal papers, including 
three accepted/published papers and three papers under 
review/revision. 

Danish Anis, PhD 
student 

While Danish has been busy with coursework throughout this 
academic term, he has continued to make progress on digital 
twin for reliability. In addition to submitting an abstract to the 
MIE graduate research symposium, his paper titled “Optimal 
RUL Estimation: A State-of-Art Digital Twin Application” has 
been accepted for the RAMS 2020 conference. He is currently 
working towards extending an LSTM-RNN technique to 
generate a probabilistic RUL prediction within a digital twin 
framework as a means of synchronization with changing 
operational states. In theory, an LSTM encoder-decoder 
(LSTM-ED) is used to train a neural network and reconstruct 
the sensor data input time-series corresponding to a healthy 
state. The resulting reconstruction error can be used to 
estimate health index (HI) training and testing sets. Using a 
time lag to record similarity between the HI curves, a weighted 
average of the final RUL estimation can thus be obtained and 
uncertainty can be quantified using Monte Carlo (MC) 
Simulation. This approach is being evaluated first on a publicly 
available engine degradation data set.  

Jing Janice Cao, 
EngSci thesis student 

Jing successfully completed her undergraduate thesis on April 
9. Her research project modelled the UKMOD Procurement 
problem with an impairment factor, incorporated the 
investment amount and reward in the decision tree model with 
different impairment situations. She modelled the problem as 
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Name Activity 

a Markov decision process and developed a backward 
calculation for each decision and chance node. She simulated a 
20-year period of impairment conditions and presented a 
distribution of optimal stopping year of investment. 

Kuilin Chen, PhD 
student 

Kuilin is continuing his research on digital twin for reheat 
furnace while a full-time employee at Arcelor Mittal Dofasco. 
He gave a talk at a PEMAC professional development event on 
March 21. He will be presenting at the June progress meeting. 

Michael Gimelfarb, 
PhD candidate 

Michael began his PhD program in September 2018 under the 
co-supervision of Professor Scott Sanner and Professor Chi-
Guhn Lee. His recent paper, “Epsilon-BMC: A Bayesian Model 
Combination Approach to Epsilon-Greedy Exploration in 
Model-Free Reinforcement Learning,” was accepted for the 
UAI 2019 conference and will be presented in July. A more 
detailed review of this work is included in the report. He is 
currently working on knowledge transfer in reinforcement 
learning using graph-structured data, Bayesian approaches 
and hierarchical RL. 

Scott Koshman, PhD 
student 

Scott is a Flex-Time PhD Candidate in the Mechanical and 
Industrial Engineering department.  He is supervised by 
Professor Fae Azhari and in his 2nd year of studies. His full time 
employer is the Royal Canadian Navy where he is a Naval 
Combat Systems Engineer (Officer) with a specialty in 
reliability engineering, supportability, and quality 
management.   The focus of his research is Equipment Health 
Monitoring for Halifax Class Frigates.  In January, he 
presented at the Reliability and Maintainability Symposium 
(RAMS) “Incorporating Condition Monitoring for Multi-
Faceted Decisions” (co-authored with Prof Azhari) which will 
be published in the pending IEEE conference proceedings.  At 
the same symposium, he participated in a breakout session 
with Department of Defense (USA) where they discussed 
developing the body of knowledge in reliability.  In April, he 
completed his requirements for PhD candidacy by passing his 
Qualifying Examination where he presented his research 
proposal “Resolving irregular data scenarios in Equipment 
Health Monitoring Decision Support Systems for Complex 
Naval Platforms.” 

Gaoyang Li, Visiting 
PhD student 

As Gaoyang wraps up his study abroad program at C-MORE, 
he is working on modelling degeneration through machine 
learning. He has developed a new integrating technique to fuse 
the stochastic process model with deep learning neural 
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Name Activity 

network. In this model, deep learning methods are used to 
learn the existing degeneration paths, and the stochastic 
process is employed to model the variability inside the data, to 
get a confidence interval about the results provided by the deep 
learning model. The integrated method is expected to 
outperform the traditional stochastic process while 
maintaining the confidence interval of the prognosis results. 

Avi Sokol, PhD 
student 

As a flex-time PhD, Avi is developing a research project directly 
linked with his employment. His work is aimed at creating a 
decision support system to advise on the procurement of 
inventory; and pricing and sale. His initial project is an 
inventory problem for inventory valued at $3M in volume. His 
ongoing research interests are dynamic pricing and sales 
suggestions. 

Gary Wang, EngSci 
thesis student 

Gary completed his final year of undergraduate studies in 
Engineering Science: Mathematics, Statistics, and Finance 
Option. He has taken a position as a hedge fund analyst at 
Rosalind Advisers. He is also a co-founder of Team Flyhand at 
The Entrepreneurship Hatchery at the University of Toronto. 
They are currently developing an application called Image-
Cloud, which utilizes its image-recognition capabilities to allow 
users to search relevant information through images rather 
than keywords. 

 
Collaboration with companies and site visits 
 
This section gives details on progress in research conducted with consortium members. 
 

Member Collaborations 

Defence Science and 
Technology 
Laboratory 

In this term, DSTL and C-MORE worked on a decision-making 
tool for long-term projects using utility as the variable. The 
problem is based on making long-term decisions that may be 
expensive to adapt in the future, using limited information that 
is available in the present. The project formed a part of Jing 
Cao’s thesis and will be presented at the June meeting. 

Department of 
National Defence 

DND is our newest member company, joining in March 2019. 
The initial project is a condition-based project for propulsion 
diesel engines on the city-class ships. We are currently 
identifying failure modes and definitions to set up the project.  

Kinross Having settled on a hazard model, we incorporated cost 
information for preventive and corrective maintenance actions 



21 

 

Member Collaborations 

to finalize the decision model. By applying the decision model 
retroactively, we were able to assess that had the decision 
model been applied, several failures would have been 
prevented, and many PM actions would have been advised to 
continue running. 

Teck In May, C-MORE visited Teck’s Sparwood location to have a 
face-to-face meeting discussing potential areas for 
collaboration. A KPI-based physical availability model and a 
decision tool for mid-life evaluation were discussed, as well as 
possibilities for harnessing a hybrid degradation model with 
Bayesian neural network. 

Toronto Transit 
Commission 

TTC wrapped up the NDT line-test project early 2019. We are 
exploring options to create a scheduling tool that will 
implement the optimized line-test schedule. A new project was 
launched in May to discuss re-inspection intervals using the 
NDT inspection crew. This will be presented in the June 
meeting. 
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Global study of current approaches to 
maintenance education and training 
Andrew Jardine 

The International Maintenance Association (IMA) is a worldwide organization 
comprising members from 30 countries on five major continents, including North 
America, South America, Africa, Australia, the Middle East, the Far East, and Europe. 
Members include researchers, senior managers, and Subject Matter Experts in the 
maintenance industry, specialists, curriculum developers, and trainers in different fields. 
This cluster aims to enhance the management of physical asset maintenance. The IMA 
vision is “global platform for knowledge exchange of effective maintenance practices and 
management.” 
 
A Committee was struck (I am one or the 11 members) to develop a questionnaire seeking 
insights into maintenance education and training. 
 
The questionnaire is a part of a global study on “A Worldwide Overview of Current 
Practice of Maintenance Training and Education (MT&E)” dedicated to determining the 
shortcomings and gap analysis of ME&T to reach the best formula of ME&T globally and 
prepare guidelines at the international level to help local and regional organizations/ 
associations plan and strategically develop their maintenance education and training 
strategies.  
 
A draft questionnaire has been prepared and subsequently reviewed by several “friends” 
of IMA. The questionnaire is now being finalized and will be circulated to an international 
group of training providers 
 
The findings will be presented at "The 3rd IMA World Maintenance Forum" organized by 
the International Maintenance Association (IMA). The presentation will be under the 
conference theme of “First Global Meeting of Maintenance Societies / A Worldwide 
Overview of Current Practice of Maintenance Training & Educating.” The conference will 
be held in the Convention Centre, Lugano, Switzerland, 30-31 Oct 2019. 
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UK MoD: long-term military asset procurement 
strategies 
Jing Cao 
 

Background 
 
Making economic decisions such as investment or procurement subject to various 
complex factors can be significant and risky to businesses, especially the development and 
research decisions for national military assets. These decisions can no longer sorely rely 
on the management’s intuitive judgments and should be modelled in more technical 
decision analysis approaches. To support the decision-making process for management 
groups, the thesis focuses on developing a long-term investment strategy for military 
assets using decision tree models, Markov decision process and real options. Interactive 
programs are constructed with designed input variables to visualize different results and 
decision values based on different input variables from real-world estimates. The thesis 
adopts a real case raised by United Kingdom Ministry of Defence (UKMOD) on its aircraft 
procurement strategies and generalizes the problem to all similar military asset 
investments. It provides the entire process of formulating and addressing the investment 
decision problems based on external and internal factors and uncertainties. 
 
Introduction 
 
Running a business requires managers to make wise investment or operation decisions. 
Real-world projects are often complex and have substantial uncertainties in multiple 
phases. One decision may completely reverse the direction of a company and determine 
the success or failure of a business.  
 
Personal judgement and subjective views are considered as one of the most significant 
parts in making decisions for companies. However, purely personal insights can be 
limited, biased and misleading. It is important to realize that human beings are imperfect 
in decision analysis as the decisions are not well supported by facts and are subject to 
risks and uncertainties.  
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As a result, the techniques of making wise decisions became an important topic of 
research. Conventional ways of decision making include statistical and economic 
methods, Return on Investment (ROI), Net Present Value (NPV) calculations, cost-
benefit analysis, etc. These traditional ways of decision making ignore outcome 
uncertainty, the choice of investment timing and irreversibility of resource commitment 
[1]. Thus, there needs to be a more advanced and complex decision analysis framework 
that can evaluate and determine the proper investment or disinvestment.  
 
The goal of the thesis project is to develop an optimizing process using decision analysis 
methods and real option theory to confirm role of decision analysis in business 
investment and procurement decisions. I will investigate a real-world business example 
for United Kingdom Ministry of Defence (UKMOD) and devise an optimization aircraft 
procurement model that will examine risks and uncertainties.  
 
Literature review 
 
Decision analysis 
 
Decision analysis is a subject analysing and optimizing real world situations including 
forecasting return from new investments, understanding oil or gas market, managing 
research and development programs subject to uncertainties and risks. It helps 
management to address uncertainties and returns in a systematic, quantitatively and 
interactive way and reduces the risks involved with subjective judgement [3]. Decision 
analysis relies on seven steps: identify the decision situation and understand objectives, 
identify alternatives, decompose and model the problem, choose the best alternative, 
sensitivity analysis, further analysis and implementation [3]. 
 
Step 1: Identify the decision situation and understand objectives 
 
The first thing to do in decision analysis is to explore every uncertainty and fact and 
understand the central value or ultimate goal of the decision. Talking to the stakeholders 
will be an essential way to establish the precise nature of the situation.  
 
Step 2: Identify alternatives 
 
With the well-established objectives and situations, we turned to identify and discover 
every possible alternatives of the decision. Sometimes the alternatives are hard to be 
explicitly discovered, and that requires experience and creativity to reveal the hidden 
solutions. Some techniques of creativity are useful too.  
 
Step 3: Decompose and model the problem 
 
This section involves decomposing the problem and understanding the structure of the 
problem. Dividing the problem into sub-pieces may be a good way to modelling each stage 
of the problem. Each part of the problem could be associated with different time stages or 
different uncertainty factors. Modelling of the problem is the most essential part of 
decision analysis. There are many different kinds of modelling, such as mathematical and 
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graphic, hierarchical and network, or more specifically, decision trees, influence 
diagrams, and machine learning, etc.  
 
Step 4: Choose the best alternative 
 
After properly modelling the problem, choose or find one preferred alternative among all 
possible paths based on certain metrics, e.g. expected return, expected utility or certainty 
equivalent, etc.  
 
Step 5: Sensitivity analysis 
 
When the preferred alternative is chosen, the question that if we made a slight change to 
one of the factors, would the solution still be optimal will be raised. In order to answer 
that, sensitivity analysis is introduced to test the sensitivity of the decision with respect to 
small changes. 
 
Step 6: Is further analysis needed? 
 
Decision analysis is an iterative process. Once everything is settled down, we need to go 
back and check if further analysis is required according to the preferred solution. It might 
be necessary to refine some of the objectives or constraints due to various discoveries 
during the decision analysis process, so that all previous steps need to be re-performed. 
Such discoveries include the management’s beliefs, likelihood of the uncertainties, 
preferences of the outcome, etc. 
 
Step 7: Implement the chosen alternative 
 
Once the preferred alternative is demonstrated to be the most efficient solution, 
implementation can be started. 
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Decision tools 
 
To perform the above analysis, one of the useful decision tools is the set of Excel add-on 
developed by Palisade’s DecisionTools suite. The suite contains five programs: 
PrecisionTree, RISKview, BestFit, TopRank and @RISK. Each program is intended to be 
used for different stage of the decision analysis. PrecisionTree is used to structure decision 
tree models graphically and mathematically. It is also able to perform sensitivity analysis 
and model the decision variables with utility functions. TopRank is also used for 
sensitivity analysis and RISKview can be used to model uncertainties. @RISK is mainly 
for simulation purpose, one of the most commonly used examples is Monte Carlo 
simulations. These programs interact and support each other to provide a clear decision 
analysis interactive system. 
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Decision trees 
 
Decision tree analysis is one of the most popular tools in decision modelling. In decision 
tree analysis, there are three essential elements: decisions, chances and consequences. 
Same as influence diagrams, decision tree uses squares to represent decisions and circles 
to represent chances. The branches followed by decisions are decision alternatives to 
make and the branches followed by the chances are possible outcomes with probabilities. 
Each branch has a consequence at the end.  
 
Utility Functions 
 
With certain probability distributions, we are able to calculate expected monetary value 
for decision alternatives. However, these monetary value does not capture risk attitude. 
For example, the negative impact of losing 100k to most people is larger than the positive 
impact of earning 100k. This is demonstrated as risk averse utility function [3]. Utility 
and wealth will display a concave shape for individuals who are risk averse a linear shape 
for the one that are risk neutral and convex for risk seeking. We assume in UKMOD 
example, our stakeholders are risk neutral as most of the people. Exponential utility 
functions capture risk attitude and has the general format of:  
 

𝑈(𝑥) = 1 − 𝑒
𝑥
𝑅 

 
The parameter R is called risk tolerance and determines how risk averse the utility 
function is. A larger value of R indicates a flatter utility curve and the individual is less 
risk averse.  
 
Reinforcement learning 
 
Markov Decision Process is one of the optimal control strategies within the scope of 
reinforcement learning. Reinforcement learning, similar to machine learning is simply 
learning what to do by setting a numerical reward signal and maximize it. In our decision 
analysis model, reinforcement learning helps to decide which actions to take by 
considering not only the immediate reward but also the following rewards in next series 
of the states. It composes two important features: trial-and-error search and delayed 
reward, which distinguish reinforcement learning from other methodologies. 
 
One of the challenges in reinforcement learning is the exploration-exploitation dilemma, 
which demonstrate the trade-off between exploration and exploitation. Exploration is the 
process to explore actions that the agent has never selected before, and there is some 
possibility that the agent could get a larger reward. However, exploration consumes time 
and energy, while takes the risk of no better actions could be found, therefore exploration 
may not be always efficient. Exploitation, on the other hand, is just to use the actions that 
have already been experienced and get a known reward without looking for new actions 
to explore. Neither exploration nor exploitation can be used sorely in reinforcement 
learning process, so the trade-off between them is what we have to consider and balance. 
Reinforcement learning has four main elements which are essential for its environment: 
a policy, a reward signal, a value function and a model. 
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• A policy may be deterministic or stochastic. It is the core element of reinforcement 

learning as it can determine behaviour. It tells the mapping of following states or 
behaviours given the previous states and actions and this relationship can be as 
simple as a lookup take or as complex as some extensive computation and 
searching. 

• A reward signal is the core element for the goal of reinforcement learning. As the 
ultimate objective that the agent is perusing is just to maximize the total expected 
reward, the reward signal defines the positive or negative impact that a certain 
action may bring to the whole process. It is also the primary reason for changing 
the policy: If an action results in a low reward, then the policy might be altered to 
choose a different action in the future. 

• A value function specifies the value of a state considering all cumulative rewards 
in the future. It not only consists of the immediate reward, but also indicate the 
long-run desirability of a state by considering future rewards followed by the 
current state. 

• A model is used for planning, by which is used to decide actions before actually 
experienced. It mimics the behaviour and make inferences of the environment. The 
ways to solve the reinforcement learning problem includes model-free and model-
based methods. 

 
One of the limitations of reinforcement learning is that it relies heavily on the state 
element by using it as the input and output variables of the policy, value function and the 
model. It does not define the state signals, but instead focuses on the value functions of 
the states what are already available in the environment. 
 
Finite Markov decision process 
 
Markov Decision Process is a reinforcement learning framing in order to achieve a goal. 
It has interactive relationship between an agent, which is a decision maker or learner and 
an environment as shown in below diagram. The environment responds with actions 
being taken and gives rise to rewards in numerical value form [5]. The ultimate goal in 
this process is for the agent to maximize the total rewards through choices of actions. 
 

 
 
In finite MDPs, the agent receives the state of the environment St ∈ S and select one of the 
actions At ∈ A(s) at each time step, t = 0,1,2,3… by interacting with the environment. After 
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the interaction, the agent receives a reward signal in numerical value form and finds itself 
in the next state St+1. Therefore, the agent follows a sequence that begins like: 
 

 
 
The random variables 𝑅t and 𝑆t have discrete probability distributions depending on the 
previous state and the action taken because the MDP is discrete. Given the preceding state 
and an action, the probability of getting a reward r and jump to state s’ is defined as: 
 

 
 
for all s’, 𝑠 ∈ 𝒮, 𝑟 ∈ ℛ, 𝑎𝑛𝑑 𝑎 ∈ 𝒜(𝑠). The probability function p is an ordinary deterministic 
function based on the four variables. 
 
In this process, we define objective as to maximize the total expected returns. In this case, 
at the current state 𝑆t, we would like to sum up the sequence of returns and denote the 
sum as 𝐺t, the expected return: 
 

 
 
where 𝑇 is the final time step in the process. This approach works for processes with 
discrete episodes, and each episode has a terminal state followed by another round of 
starting state. The agent is learning how to choose the optimal 𝐴t to maximize the total 
reward. Considering the discount factor 𝛾 ∈ [0,1], the expected discount return 𝐺t 
becomes: 

 
 
If the discount rate is less than 1, then the equation is finite and could be maximized as 
long as {𝑅k} is bounded. We can also write the expected return in a recursive form: 
 

 
 
This expected total return function works for all time steps before the terminal step. The 
other two elements value function and policy is defined by: 
 

 Value function 𝜈π(𝑠): the expected return when starting from a particular state s 
and follow by the policy π: 

 
for all s ∈ 𝒮. 
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 The action value function for policy π is defined as 𝑞π(𝑠, 𝑎). It is the value of taking 
an action 𝑎 at the state s considering all upcoming time steps: 

 
 With the above definitions, we know one of the most important characteristics of 

reinforcement learning is that the value function satisfies the recursive 
relationship similar to the expected returns we defined before. Therefore, the 
Bellman Equation demonstrate the property by defining the value function in 
terms of the successor states: 
 

 

 
 
for all s ∈ 𝒮. In this case, the value function is the unique solution to the Bellman 
equation and the Bellman equation provides a way to learn and approximate value 
function [5]. 

 
UKMOD: long-term procurement problem 
 
To investigate and demonstrate the effectiveness of decision analysis, I worked with 
Centre for Maintenance Optimization and Reliability Engineering (C-MORE) on a 
military procurement problem raised by United Kingdom Military of Defence (UKMOD). 
C-MORE is a research organization under Department of Mechanical and Industrial 
Engineering at University of Toronto and UKMOD is one of the important clients of the 
organization. The thesis relies on the problem and conditions provided by UKMOD but 
can be generalized to the decision analysis of any military asset investment and 
procurement problem. The ultimate goal is to deliver a technologically and/or 
operationally complex end product using proper decision models. 
 
Objectives and uncertainties 
 
The objective of the analysis is to model the decision such that we can find an optimized 
process to invest in military aircrafts. Investing in military aircrafts is a long-term project. 
It requires multiple capital investments in consecutive years and each year is associated 
with the discrete decisions of continuing investing or stop the investment. The return 
from investing is unknown and subject to multiple uncertainties and risks, such as the 
source of procurement, military requirements, technology, etc. There will be a range of 
internal and external factors and uncertainties that can affect the efficiency and 
appropriateness of each potential approach in a given situation. It is desired to devise an 
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optimization process that will examine the risks and uncertainties in a given situation and 
will calculate the range of potential outcomes for each approach and hence indicate range 
of potential approaches and which risks will need to be especially considered in each case. 
 
The research gap is to develop a decision analysis strategy especially for the case of 
military assets for UKMOD by implementing various decision analysis models and tools. 
There are no specific data sets for this research and all the variables are designed to be 
input and can be modified to perform sensitivity analysis. The strategy should be concise 
and clear in terms of presentation and user interactions such that the management of 
military asset, e.g. UKMOD management, is able to modify the inputted variables and 
perform decision analysis to support their decision making. 
 
Suggested modelling strategies 
 
There are three main options of procurement strategies that could be adopted suggested 
by UKMOD: waterfall model, incremental model, and iterative model. 
 

• Waterfall Model – In this approach the requirements for the final product are set, 
and then design, production and introduction into service activities are followed 
sequentially, delivering the final product in a single iteration. Decisions could only 
be made at the beginning of the process and cannot be modified once the 
investment is settled. 

• Incremental Model – In this approach the requirements for the final product are 
set, together with the requirements for an interim level of performance to be 
delivered. The design work for the initial level of performance is undertaken, 
informed by the requirements that exist for the final level of performance, followed 
by the production and introduction into service of the initial capability. Once this 
has been achieved the design, production and introduction into service of the final 
version can be undertaken. 

• Iterative Model – This approach is composed of a series of waterfalls, that 
iteratively work towards a final solution, but rather than setting the final 
requirements as the first activity, each iteration has a new set of requirements, 
informed by the results of the previous iterations. In this approach, decisions can 
be modified constantly at the beginning of each time step to adjust the direction of 
the investment to match the future expectations. However, some of the chances 
are lost due to delay in decision-making or diseconomies of scale. 

 
Problem formulation 
 
Using the utility theory as demonstrated in above literature review sections, we would like 
to find the stakeholders’ utility for each possible scenario. The optimized or preferred 
alternative will have the highest utility value. We shall consider the below factors when 
measuring utility: 
 

• Investment in the aircraft: The amount of investment on aircraft each year is a 
necessary factor in utility. If initial investment amount is too high and the return 
is expected to be unsatisfactory, it might decrease expected utility and hence affect 
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the initial investment decision. Due to budget constraint, we assume lower 
investment with higher return will give more satisfaction and higher price with 
lower return will give less satisfaction. 

• Maintenance and operating costs: The maintenance and operating costs or other 
related costs associated with the aircrafts, similarly, are subject to the budget 
constraint. Therefore, we assume the stakeholders would prefer less associated 
costs with respect to certain amount of return. 

• Contribution to the mission: It is the core component of the reward and 
satisfaction to national defence because military aircrafts are mainly developed to 
meet certain military tasks or missions. The investments are always better to fit in 
the missions properly in order to give more satisfaction. Compared with the large 
value of reward brought by the proper contribution to the missions, the investment 
would be less concerned to the national defence management, and they are willing 
to spend large amount of investment to satisfy certain important missions. 

• Impairment: The internal or external factors will cause the aircraft to reduce its 
value, either due to regular amortization or unexpected technology from enemies. 
Details to be followed in the one-factor decision model section. 

• Unexpected events such as wars. If a war happens, the demand for military 
aircrafts will increase significantly and thus create a completely different utility 
function. 

 
Each aspect has dynamic numerical values which can be stochastic variables over the time 
period. The relationship of each factor and the satisfaction may be linear or quadratic or 
exponential, which should be determined and modelled by the specific stakeholders or 
scenarios. In this project, we use exponential utility functions to model the relationship 
between wealth values and utilities. The relationship demonstrates a concave exponential 
curve, indicating the risk-averse nature of the investors. 
 

 
 
The concave curve turns flatter as the wealth value increases suggests that the risk-averse 
investors tend to get less satisfactions for the same unit of increase in wealth value when 
the wealth value gets very large. It is exactly opposite for the risk-seeking investors. For 
military asset holders, the nature of risk-averse investors is more appropriate because the 
national defence will not enjoy risky investments using the military budget. 
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The thesis assumes the military asset holders are able to provide numerical values of 
expected investment or reward values in terms of wealth value for each time step during 
the investment. The analysis process will also need to understand the risk-averseness of 
the investors and estimate proper variables to determine the utility function which could 
convert wealth value into satisfactions. 
 
One factor model on impairment 
 
Two different types of impairment 
 
To better model the problem and understand what my stakeholders require, I 
decomposed the problem into several parts. Each part is associated with one uncertain 
factor illustrated above. We pick the factor “Impairment” to begin with. After back and 
forth communication with the military asset management group, we understand that for 
aircraft impairment, there are mainly two types of impairment described as the following: 
 

• Regular impairment: 
Regular amortization of aircraft invested, usually moderate percentage (2-5%) of 
aircraft’s value is impaired each year. An increase in impairment amount decreases 
the wealth value of the aircraft and hence decease the utility of the asset holders. 
In addition, we understand the fact that at early years of investment (1-3 years after 
initial investment), the impairment of aircraft can be negative, i.e. the value of the 
aircraft increases as UKMOD gets more familiar with the functions of aircrafts and 
the aircrafts become more useful. After typically 3 to 5 years, the regular positive 
impairment happens, which decrease the value of aircraft and hence decrease the 
utility. 

• Unexpected impairment: 
This occurs when something unexpected happens which significantly reduces the 
value of our aircraft. For example, when enemies invent some kinds of witchcraft 
that completely counter the aircraft we invested and make our investment 
completely useless. Another example will be some unbelievable and advanced 
technology appears such that we no longer need the military aircraft we invested 
and therefore we could get a largely negative reward or a dramatic decrease in 
utility. 

 
Interactive program for impairment analysis 
 
Considering the one factor model for impairment, I decomposed the problem into several 
time periods, each period indicates 1 year. For each year, the management group can 
estimate and input the following variables: 
 

• The amount of regular impairment in percentage (2-5%) 
• The percentage decrease of the aircraft value when unexpected impairment 

happens (typically a large percentage of the aircraft value would be written off) 
• The probability that the unexpected impairment happens (very unlikely at the 

beginning of the investment, small probability several years later) 
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• The utility coefficient (indicates the risk-averseness of the investors) 
• An initial level of base utility 

 
With these variables, a utility function can be constructed to convert the reward and 
investment into satisfaction. An expected utility is calculated by incorporating the 
estimated probabilities and returns for each scenario. This interactive program allows the 
management to analyse the expected satisfactions by inputting variables and constructs 
a visualized diagram as shown in the example below. 
 

 
 
Decision tree analysis 
 
Introduction to decision tree analysis 
 
On top of the one factor model, the next step is to add in other factors such as investment 
and contribution to the missions. Investment, in the context of military assets, is a long 
term research and development process and requires continuous capital all along the 
project. Contribution to mission creates high level of satisfaction to national defence and 
can be modelled as a numerical reward. To model the problem in decision tree analysis, 
we consider discrete time steps and model the investment as a negative utility value and 
the satisfaction from performing the missions successfully as a positive reward added to 
the utility value. The thesis assumes the rewards and investments can be estimated by 
UKMOD and all numerical values describe below are in terms of utility value. 
 
In each time period, there is one decision to make and two chances followed. In the case 
of impairment, at the starting point of each time period, there are two decision branches: 
Continue investment and stop investment. At the end of this time period, there are two 
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chance branches: Regular impairment or unexpected impairment. After several time 
periods, for each outcome there is one consequence at the very end. 
 
We need the variables below in our decision tree analysis: 
 

 
 
Implement decision trees 
 
This decision tree model can be implemented with PrecisionTree, an Excel add-on to 
perform decision analysis. The initial decision at time 0, i.e. the beginning of the first time 
period would be to invest or not. The initial decision is represented by the green square 
in Figure 5 and the expected value “3283” is the higher of the values from two chance 
branches. The investment amount can be entered under the branch of the investment or 
link it to a cell with values that can be modified later. 
 
After the initial decision, if we go with the investment branch, we can model two chance 
branches as regular impairment and unexpected impairment as shown in Figure 6. The 
probability of each chance is entered above the branch line and the return is below the 
branch line. Here the return incorporates both the reward brought by the aircraft and the 
amount of impairment during the period. Similarly, they can be lined to cells in this Excel 
file which can be modified or simulated later. The value under chance “3282” represents 
the expected wealth we could get under the modelling situation, i.e. when the probability 
of regular impairment is 99%. 



38 

 

 

 
 
After each chance, the second decision needs to be made: either continue investing or 
quit. Similar values and modelling follow until all five periods end. One the other end, if 
initially we choose not to invest, then like Figure 7, we have no investment amount and 
no impairment. Expected wealth equals to zero. The triangle at the very end represents a 
consequence. 
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All branches described above have an ending node which represents its consequence and 
indicates the expected value of this path. All chance nodes will have an expected value 
based on the following probability and all decision nodes will have one of the highest 
expected values from their following chance nodes. 
 
Choose the optimal path 
 
The optimal path is the one with highest expected value. PrecisionTree will automatically 
find the optimal path and indicate it by marking “True” on each of the decision. It allows 
utility function analysis and we can choose to display expected utility or certainty 
equivalent instead of expected values. (Shown in Figure 5) The optimal path will always 
be based on utility functions if you choose to use utility function in model settings. 
 

 
 
Markov decision process model 
 
Introduction to Markov decision process model 
 
As mentioned in the literature review sections, Markov Decision Process is one of the 
decision analysis methods in reinforcement learning. Its goal is to select the proper 
actions at each state to maximize the expected total return considering current reward 
and all future following states. 
 
Markov decision process formulation 
 
Consider a time period of 20 years and we divide that into five time periods. Converting 
our decision tree model into a finite MDP, we have a series of states at each time period 
where 
 

𝑆t ∈ 𝒮 
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where we consider 𝒮 as the market conditions, i.e. either regular impairment happens, or 
unexpected impairment happens, e.g. some kind of witchcraft is invented. 
 
We have two possible actions in our model: 
 

𝑎 ∈ 𝒜(𝑠) 
 
where 𝒜(𝑠) is the space of the actions we can perform if we can make decision at that 
state, i.e. either continue the investment or stop the investment. 
 
In this finite MDP, the agent selects the action to invest or to stop invest at each time step, 
t = 0,1,2,3,4,5 by interacting with the environment. After the interaction, the agent 
receives a positive reward signal in numerical value from UKMOD by contributing to the 
missions in regular impairment market condition, or a negative reward signal if 
unexpected impairment happens. The agent then moves on to the next state St+1. 
Therefore, the agent follows a sequence that begins like: 
 

 
 
and 𝑅t > 0 in regular impairment condition, 𝑅5 < 0 in unexpected impairment condition. 
 
Given the preceding state and an action, the probability of getting a reward r and jump to 
state s’ p(𝑠’, 𝑟|𝑠, 𝑎) is deterministic and is inputted by the management as a variable. In 
this process, our objective is to maximize the total expected returns. At the current state 
𝑆t, the expected return is the sum of all following rewards after time period t. 
 

 
 
where 𝑇 is the final time step in the process, which is 5. Considering the discount factor  
𝛾 ∈ [0,1], the expected discount return 𝐺t becomes: 

 
 
The discount rate can also be an inputted variable. We can also write the expected return 
in a recursive form: 
 

 
 
The process calculates the value function for each decision nodes by summing up the 
expected returns starting form a particular state s and follow by the policy π. The decision 
value of each node is the reward given by taking this particular action and the expected 
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return from the next state. Therefore, the Bellman Equation demonstrate the property by 
defining the value function in terms of the successor states: 
 

 
 
This value equation provides a recursive relationship between the decision values and the 
successor values and defines a backward terminal value problem similar to calculating the 
value of financial options. 
 
Markov decision process analysis 
 

To compute the terminal values of each scenario, we need the input variables of 
investment, the positive reward from regular impairment scenarios and the negative 
reward for the unexpected impairment scenarios in terms of utility values. We take the 
data set below as an example, but the values can be modified by the decision makers. 
 
Consider 5 time periods and each time period has four possible conditions: 

• Continue investment and regular impairment happens 
• Continue investment and unexpected impairment happens 
• Stop investment and regular impairment happens 
• Stop investment and unexpected impairment happens 

 

 
 

After 5 years, we have 1024 terminal values to be computed. The terminal values are just 
the summation of all previous returns, i.e. reward minus investment, in terms of utility, 
before whenever the first time we stop the investment. 
 
Having the terminal values, we can compute the decision values for each decision nodes 
using the Bellman equation, which adds the current investment utility and the maximum 
value of the two following chance values. The same implementations are performed for 
all decision nodes in the five time periods. 
 
Similarly, we can compute the chance values by adding the current reward to the expected 
values of the two following decision values using the Bellman equation.  
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Therefore, in our five-period model, for each decision, we have two decision values. 
Decision makers can choose the action with the maximum of the two values to perform 
because that is the optimal decision at that stage considering the given investment, 
reward and probability variables. The program returns values for each node in the process 
and helps decision makers to adjust investment decisions according to the constantly 
changing market variables. 
 
Simulation of the optimal stopping year 
 

Introduction 
 

In this section, we address the same problem in another prospective. We would like to see 
the distribution of the optimal stopping time for 10000 simulations. To determine the 
optimal stopping year, we still take in the same inputted reward values and investment 
amount in in terms of utility as shown in the last chapter and choose the year with 
maximum total return. Instead of focusing on the decision to be made at each time step, 
we simulate the market condition and find the distribution of the optimal stopping year. 
 
Find the optimal stopping year 
 

For simulation purposes, we take in a distribution of estimated probabilities of 
unexpected impairment happens, and randomly generate a series of conditions for 20 
years. We take in a positive reward for any regular impairment situation and a negative 
reward for unexpected situation as variables, calculating the total reward up to year t for 
each t = 1,2,3,4…20. Comparing the total rewards for each year, we found the year with 
the maximum reward value and indicate it as the optimal stopping year. We record the 
optimal stopping year in each simulation and repeat the simulation 10000 times. The 
following histogram is a typical representation of what we could get: 

 
 

Analysis of the results 
 

In the histogram, we can see that a large frequency sits at year 20, which means as the 
probability of unexpected impairment is generally small, around 1500 simulations out of 
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10000 do not have unexpected impairment or have one at the very early stage, so it is 
optimal to keep investing until the project finishes. However, with the given data set, only 
15% of the chances that the project could be kept until year 20, a large number of 
simulations are optimal to stop before year 20. As the initial probability of unexpected 
impairment is very low, and the impact of the impairment also gradually increases during 
the investment term, it is more likely that a serious impairment happens after year 10, 
and it would be optimal to stop before the impairment. The frequency reaches the 
maximum around year 12-13 and declines after year 13 because some simulations which 
were expected to have an unexpected impairment later already have one and it is already 
optimal to stop at the earlier stage. 
 

The histogram does not provide direct suggestions for decision makers to make decisions 
but gives a general picture of optimal stopping year to guide the distribution of decisions. 
 
Conclusion and reflection 
 

In this thesis project, we addressed the long-term procurement strategy by first 
considering a one factor model, then modelling it in the decision tree model followed by 
the Markov decision process formulation. Finally, we simulated the process to find the 
distribution of optimal stopping time. By evaluating the decision values for each possible 
decision that we can make at each period of time, we tend to choose the decision with 
highest expected values to support our decision-making process. 
 

As the thesis is a client-facing project, back-and-forth communications between C-MORE 
and UKMOD are essential to understand the problem definition more completely. Thus, 
the project requires a longer time to understand the client’s requirements. To UKMOD, 
the project is on-going and needs to incorporate other specific and customized factors into 
the decision analysis process, such as the military technology, supply side constraints, etc. 
 

The project can be generalized to any long-term asset investment and procurement 
considering different market conditions, the rewards and the investments. Considering 
any random market conditions similar to regular and unexpected impairment, the 
investment strategy can be modelled in decision tree models. Proper use of the decision 
values from Markov Decision Process Model and real options can be beneficial for 
decision-making. The simulation distributions can give a general picture of optimal 
stopping time for a risky investment. 
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DND: Propulsion diesel engine replacement 
models 
Janet Lam 

Background 
 
In March 2019, the Canadian Department of National Defence became C-MORE’s newest 
consortium member. As our initial project, we are looking at the replacement policies for 
propulsion diesel engines (PDE) in the Halifax Class ships.  
 
Current procedures 
 

The Halifax Class PDEs are currently under the Oil and Coolant Condition Analysis 
Program (OCCAP) wherein oil and coolant samples are taken every 30 days and analysed 
off-site. Once the samples are analysed, a report is produced and maintenance decisions 
are made by the fleet maintenance facility (FMF). 
 
One of the challenges with the current procedures is what appears to be a disconnect 
between the OCCAP numerical results, and the analysed comments. In some cases, the 
OCCAP values will register as critical, and the technician comments will recommend no 
action, whereas in other cases the converse will occur.  
Figure 1 demonstrates a situation in which there was a conflict between the OCCAP 
readings and the recommended action. 
 

 
 

Figure 1 Sample excerpt of OCCAP results and recommendations 
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The objective of this project is to develop a model that expresses the relationship between 
OCCAP readings and the health of the PDEs in the Halifax Class fleet. By adding in cost 
information, we may also develop a decision policy that advises on performing preventive 
maintenance actions based on OCCAP’s numerical results. 
 
Preliminary analysis 
 
Jamie Dreyer in collaboration with Nicolle Kilfoyle prepared three main data files. One 
file was the OCCAP readings, this is to be used as condition monitoring information. The 
second file was an excerpt from the Defense Resource Management Information System 
(DRMIS), and includes all of the work orders associated with the PDEs on the Halifax 
Class ships. This information will be used to obtain the event information associated with 
the engine uptime, downtime due to preventive maintenance and failure. The third file 
includes the engine running hours that is measured on a monthly basis. 
 
The dataset ranges from 2013 to the present, and includes planned preventive 
maintenance actions and corrective maintenance actions. One of the challenges that face 
this project is determining failures of the engine from the work orders. The DRMIS data 
currently lists work order types as preventive or corrective (among others), however, a 
corrective maintenance action does not necessarily correlate to an engine failure. This is 
because the engine is a complex asset that may require repairs that are not critical to the 
function of the engine. For example, replacing a burned out lightbulb is considered 
corrective maintenance, but clearly should not be an indicator of engine failure. 
 
One of the approaches that has been considered is using the cost of the replacement 
components as a proxy for whether the engine has failed or not. This is not unreasonable, 
as a component that is critical to engine functionality is more likely to be expensive 
compared to an auxiliary component. However, this hypothesis requires deeper 
consideration, as it is possible that an expensive component is not necessarily a critical 
component. 
 
Our primary task in the immediate term is to distinguish failures, minor preventive 
maintenance and major preventive actions from the work orders so that an age-based 
analysis can be performed. The incorporation of OCCAP data for condition-based analysis 
will follow.  
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TTC: Track re-inspection schedule optimization 
Janet Lam, Dragan Banjevic 

Background 
 
One of TTC’s rail maintenance strategies includes the detection and resolution of track 
defects. Each defect is given a priority level, and a priority level is assigned a time limit in 
which the defect must be resolved, or repaired. In the event that maintenance resources 
are not available to repair defects in time, the non-destructive testing (NDT) team will re-
inspect the defect, which restarts the clock on the time limit. Based on experience, TTC 
feels that a significant portion of the NDT team’s resources are being spent on re-
inspections, and would like to review the time limits associated with each priority level to 
be based on evidence. 
 
Preliminary analysis 
 

There are seven different priority levels, with differing time limits. The priorities are 
designated by colour, with red, yellow and purple being considered “high priority” defects, 
and blue, brown and gray not high priority defects. 
 
Table 1 lists the priorities in increasing order and their time limits for resolution. Note 
that grey defects are not required to be updated; they are simply recorded for information 
in the event that they are upgraded to higher priority. 
 
Table 1 Defect priorities and their associated time limits 
 

Priority Time limit 
(days) 

Grey None 
Brown 365 
Blue 45 
Purple 21 
Yellow 10 
Red 1 
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In practice, red defects are analogous to track failures that require immediate resolution. 
Similarly, yellow defects are prioritized by the maintenance team, and thus are repaired 
relatively quickly. Thus, they may be excluded from the re-inspection project. 
 
Each defect is given a unique identifier when it is first detected. Each follow-up 
inspection results in an entry labelled “updated”, and a final entry labelled “completed,” 
when the defect is repaired. Using data from 2015-2018, we counted the number of 
entries for each unique defect. Only considering the defects that had been completed, 
the summary is given in Table 2. 
 
Table 2 Summary of defect updates 
 

Initial defect 
colour 

Number of 
unique 
defects 

Mean # of 
entries per 
defect 

Mean days to 
complete 
record 

Avg 
inspection 
interval 

Grey 131 2.8 319.5 112.5 
Brown 6 2 110.8 55.4 
Blue 17 4.9 167.7 33.9 
Purple 330 9.1 139.6 15.3 
Yellow 39 2.3 7.6 3.3 
Red 4 2.8 2.25 0.8 

 
The information summarized in Table 2 is limited to completed defects, so it does not 
include defects that are were still undergoing more re-inspections, and grey defects that 
did not have any follow-ups. The second column shows the average number of entries 
recorded for a unique defect. This is a proxy for the number of re-inspections, with the 
exception that these only include the completed defects. This means that the smallest 
number of entries will be two: one to record the new defect, and one to close the defect. 
 
There is evidence that blue and purple defects are undergoing more re-inspections than 
strictly necessary, as blue defects have 5 records, and purple defects have 9 records on 
average. The defects are resolved in 168 and 140 days for blue and purple defects, 
respectively. The initial hypothesis is that the re-inspection time limit may be somewhat 
conservative. 
 
Another point of interest is the average inspection interval. These values represent how 
many days lapse between each re-inspection, or new record. When these values are 
compared to the time limits listed in Table 1, it can be seen that the actual re-inspections 
are done much more frequently than the time limit allows. Particularly in the case of blue 
and purple defects with many re-inspections, this shortening of the time limit will result 
in additional re-inspection efforts that were not required to meet the current guidelines. 
 

 
 
 
 
Objectives 
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This project has several areas that may be improved, or better understood. Throughout 
the project, we aim to maintain the current level of reliability of the tracks. That is, less 
frequent re-inspections should not result in a reduced reliability of tracks. 
 
One of the objectives of this project is to re-evaluate the time limits associated with each 
priority level. From the preliminary analysis it can be seen that blue and purple defects 
are consuming quite a few inspection resources. Ideally, we will develop an evidence-
based approach to generating the re-inspection time limits to reduce the number of 
inspections required. 
 
Another objective is to determine the transition rate from one priority level to another. In 
the preliminary analysis, the defects were categorized by the initial priority level. 
However, over the duration of the defect, it can progress to a higher priority. In particular, 
once it reaches yellow or red priority levels, the resolution process may be quick. The 
transition to other priority levels was not captured in the preliminary analysis. Transition 
rates will definitely be necessary in order to determine the appropriate re-inspection 
guidelines for each priority level. 
 
Another objective is to include some sensitivity analysis on the recommended re-
inspection times. The NDT team consistently performs re-inspections before their 
required time limit. This may be due to operational issues that make it more convenient 
to schedule re-inspections at a certain time in their overall schedule. By performing 
sensitivity analysis, we will be able to provide a range of recommended time limits for re-
inspection. 
 
As we perform this analysis another domain of interest is to further categorize defects into 
the defect modes. Some defect modes such as bolt hole cracks are more likely to progress 
into full failures that need immediate repair, whereas others such as corrosion do not 
progress as quickly. The further categorization of defect modes is a stretch goal for this 
project. 
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Kinross Gold: Caterpillar haul truck engines 
decision policy 
Dragan Banjevic, Janet Lam 

Background 
 
In April 2018, C-MORE began a new project with Kinross on the optimal replacement 
frequency of a fleet of haul truck engines. Kinross supplied event history and a record of 
inspections gathered at oil changes for its fleet of haul trucks. In the first stage (April – 
June 2018) the data preparation and analysis was conducted, including cleanup, 
identification of anomalies and potential errors. In the second stage, initial model 
selection was started, and some preliminary results were presented at the June C-MORE 
meeting. In July – December 2018, more data cleaning was performed, mostly to look for 
“outliers” (spurious measurements, sampling errors), as well as detailed model selection. 
The results were presented at the December 2019 meeting. Finally, a decision policy for 
truck engines was completed in January – February 2019. The results were presented to 
Kinross Gold in February. At the end of April, C-MORE gave a two half days course in 
EXAKT software to Kinross personnel (Emilio Sarno, Brian Wright, Alberto Van Oordt). 
An overview of the decision model and its analysis is given in this report. 
 
A short summary of the data 
 

 There are two different engine models: 793C and 793D. After discussion with 
Kinross engineers, it was concluded that they can be considered identical for the 
analysis. 

 There are 15 units – 9 are model 793C and 6 are 793D. 

 There are 34 histories (chronological data since installation/repair until 
failure/suspension) of which 8 ended in failure, 13 ended in suspension (due to 
high hours) and 13 were still in service. 

 Inspections are made regularly throughout the lives of all units, 1323 inspections 
in total, every 300 hours (on average). 

 The data range from July 2012 to February 2018. 
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 There are 37 columns of measurements, mostly metal and oil variables. Several of 
them (mostly oil variables) are with incomplete (missing) records. They were not 
included in the analysis. 
 

What we did before December 
 

 Initial data analysis – grouping events into failures, replacements, etc., data 
anomalies, errors, etc., checking variables, Integrate oil change and filter changes 
into events. 

 Checking for outliers. 

 Explored potentially critical measurements. 

 Evaluation information appeared not really informative of failures. 

 We tried different combinations of significant variables. 

 Looking for costs – at failure and replacement. 
 

Steps after our meeting in November: decision making modelling 
 

 Estimating transition probabilities for variables in the model.   

 Finding replacement and failure costs, including downtimes. 

 Calculating decision replacement model.  

 Evaluating decision model, how good and efficient it is. 
 

Decision policy in short 
 

 The decision policy is defined by selection of a threshold on hazard function 
(critical hazard level).   

 At every inspection instant the hazard function is calculated and if its value is below 
the threshold, it is recommended to continue operation. If it is above the threshold, 
it is recommended to stop operation and perform repair/replacement.  

 The hazard level is selected to make optimal balance between expected costs of 
preventive repairs and failure repairs. 
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Hazard and decisions 
 
 
 
 
 
 
 
 
 
 
 
  
  

decision 

hazard 

warning 

critical 

time 

Figure 2 Decision policy and hazard 
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Cost parameters 
 

 Two cost parameters are required for decisions: cost of one preventive 
repair/replacement, and cost of one failure replacement (at least average costs). 

 Brian Wright from Kinross estimated the preventive replacement cost of an engine 
to $380,000, and the failure replacement cost to $925,000 – including downtime. 
They can differ, depending on a site. 

 Cost ratio of 925/380 = 2.43 is relatively moderate. 
 
Two-parameter Weibull model 
 
As an initial lifetime model for engines, without measurements, we estimated Weibull 
distribution from engines lifetimes. 
 

Table 3 Weibull model parameters 

 
 

 Engines show ageing, shape parameter = 2.313. Mean life of an engine (if run until 
failure) is 21,135 hours. 

 The Kinross policy is to replace an engine due to high hours at around 15,000-
16,000 operating hours.  

 From the Weibull model, a chance that an engine will survive to 16,000 hours 
replacement time is around 67%, not far from observed in the data. So, the chance 
to fail before replacement is 33%. 

decision 

warning 

critical 

measurement 

time 

Figure 3 Transformed decision graph 
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Time-based decision policy 
 
Time-based replacement policy option is to replace an engine at planned preventive 
replacement time. We obtained the following summary of the cost analysis. 
 

Table 4 Summary of time-based policy cost analysis 
 

 
 

 Optimal preventive replacement time - 18,793 operating hours. It would result in 
about 56% preventive replacements, and 44% failure replacements.  

 Kinross policy is to replace due to high hours – at around 16,000 hours. Optimal 
replacement time is somewhat longer than for Kinross policy, which would result 
in more failures (44% to 33%), but in more utilized time and lower cost per time 
unit. With a cost ratio higher than now (of 2.43), the replacement time would be 
shorter. 

 Expected saving compared to current cost  ≈ 12.5% ($38.6/hour vs $44.2/hour). 
 
Condition-based replacement policy 
 

 Several hazard models with oil measurements had been tried for a reasonable 
decision policy. 

 The models show, in theory, savings between 15-25% in comparison with the 
current policy. 

 When different models were applied retroactively, saving were smaller, between 1-
7%.  

 
We selected model with metal variables Fe, Si, and Mo. 
   

 When applied retroactively, it prevented 3 out of 8 failures. More details will 
follow. 

 Expected saving – 15% 

 More data (histories) are needed for validation 
 
Optimal condition-based policy has the following form. It is presented as “composite 
covariate” Z on y-axes, versus working age on x-axis. Composite covariate is a linear 
combination (estimated from the data) of selected variables Fe, Si, and Mo. 



57 

 

 
 

 
 

Figure 4 Decision policy "red-yellow-green" chart 

 

Policy in work – an example of engine id 812 history 
 

 

Figure 5 Decision policy applied to truck 812 
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Some comments on the history: 
 

 Decision recommendation: Intervene immediately - points are in red zone 

 Last inspection was at 14,873 hours 

 Engine failed after 247 hours (in one month calendar time), at 14,873 + 247. 
 
Caterpillar S.O.S service recommendations 
 
Caterpillar provides decision recommendations in form of warning limits. The limits 
don’t depend on engine’s age. 
 

Table 5 Caterpillar S.O.S service wear table 

 
 
It is not clear when an action is required. Is it when any of the elements is above the limit? 
There is no clear indication in the data whether any of those recommendations were 
applied with engines measurements. Mo (molybdenum) is not included in the S.O.S. list 
of critical metals. It was found significant in our analysis? Where does it come from? 
 
Decision policy analysis 
 
Decision policy was applied retroactively to truck histories. Out of 8 failures, 3 would have 
been prevented, with some reduction in operating hours, but saving in cost per hour, as 
mentioned above. In other 3 cases, recommendations to intervene would likely come close 
to failures. 
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Figure 6 Engine failure before intervention, but approaching 

 
A summary of all histories, failed and unfailed is presented in the following table. 
 
Table 6 Summary of EXAKT policy applied to truck histories 
 

Data EXAKT Count 

Failed (and replaced, 8) Saved 3 

 Not saved, but close 3 

 Not saved 2 

Retired (2) Continue 2 

Replaced (11) Intervene 2 

 Continue 9 

In operation (13) Intervene 1 

 Close to intervene 2 

 Continue 11 
 

The data show that the policy is, more or less, compatible with the data, e.g., for 26 
unfailed histories, the policy would recommend for 23 to continue, and for 3 to intervene. 
 
Conclusions 
 

 Analysis show promising results for improvement of the replacement policy.  

 The saving predicted is 15-20% of the current policy, but this requires more 
validation by more engine histories. 

 Some failures may not be related to oil variables (to wear, or oil), so they cannot be 
accurately predicted by the policy, we don’t have data to check it. 

 The replacement only due to age (high hours), could be also improved, by 
somewhat extending the upper limit from 16,000 hours to more than 18,000 
hours. 
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Next steps 
 

 Preliminary implementation, learning and testing (we did it in form of short 
EXAKT course in April). 

 EXAKT data base creation, EXAKT installation. 

 Real data entering procedure.  

 Decision policy application. 

 Feed-back and updates. 

 Finally – implementation on Kinross CMMS. 
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Teck: project exploration 
Janet Lam 

Background 
 
In May 2019 Chi-Guhn and Janet visited the Teck Sparwood office in British Columbia to 
have a discussion on some potential areas of collaboration. Kevin Hatch and Alex Creagh 
were in attendance, with David Williams on a remote call. 
 
Three main projects were identified. This report will discuss these projects in turn.  
 
Physical availability prediction with KPIs 
 
Teck is interested in improving its prediction of availability of their mobile assets. The 
availability of a truck is determined by many factors, including reliability, spare parts, 
labour, and operations. Rather than determining and using the direct inputs that may 
affect availability, we are interested in using key performance indicators (KPIs) that are 
currently measured and reported regularly. 
 
Alex has already developed some preliminary models that express the relationship 
between some KPIs and the historical availability of their trucks. However, in some cases 
similar equipment with similar KPIs will have different availabilities. Thus, a model that 
better relates the inputs to outputs is of interest. 
 
Economic decision tool 
 
One of Teck’s maintenance policies includes a late-life audit in which some of their 
equipment is assessed at some pre-determined life point in the later part of the 
equipment’s life. Based on its previous performance and results of the assessment, a 
decision is made for the equipment on whether it is to be retired, or to be used for an 
additional number of years. 
 
In Teck’s experience, the performance of the equipment before and after the audit is not 
consistent, and equipment that was very reliable leading up to the audit may suddenly 
experience an increased failure rate following the audit. 
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We would like to further investigate the relationship between equipment health, age, the 
time of the audit, and how better evidence-based decisions may be made. 
 
Holistic analysis of wheel motor maintenance 
 
In the maintenance procedures of wheel motors, Teck currently uses historical records 
and makes maintenance decisions based on information from the whole life of a wheel 
motor. This method is known to be a good way to make decisions. However, the current 
method is a labour-intensive procedure. 
 
Although using a basic proportional hazards model would be less work, the simplest 
application of the model only uses the currently health information, and doesn’t 
incorporate the historical health records. 
 
A method that incorporates or visualizes the whole life of the asset with minimal 
additional work is another project of interest for Teck.  
 
Moving forward 
 
There is also interest in applying one of the new developments in a hybrid remaining 
useful life model that incorporates a Bayesian neural network to model deterioration of 
equipment. 
 
The plan is to select a small project that can be completed within this calendar year. 
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Development of digital twin for predictive 
maintenance 
Mohamad Danish Anis, C-MORE PhD student 

Executive summary 
 
As the star concept behind the Industry 4.0 wave, a digital twin is a virtual simulation to 
mirror its physical counterpart’s performance and serve the product lifecycle in a virtual 
space. Evidently, a digital twin can identify potential issues with its corresponding real 
twin. Thus, it is best suited for enabling a physics-based and data-driven model fusion to 
estimate component remaining useful life (RUL). A constraint with modern machinery is 
that sensor data is collected sporadically as per the requirements and policies of the data-
provider. Traditional RUL prediction techniques assuming either a linear or exponential 
degradation curve may not be useful for such a scenario.  
 
In our research so far, we are working towards extending an LSTM-RNN technique to 
generate a RUL prediction within a digital twin framework as a means of synchronization 
with changing operational states. In theory, an LSTM encoder-decoder (LSTM-ED) is 
used to train a neural network and reconstruct the sensor data input time series 
corresponding to a healthy state. The resulting reconstruction error can be used to 
estimate health index (HI) training and testing sets. Using a time lag to record similarity 
between the HI curves, a weighted average of the final RUL estimation can thus be 
obtained.  
 
Currently, we are evaluating this approach first on a publicly available engine degradation 
data set. We later plan to extend this approach to tri-axial vibration data collected 
intermittently from a wind turbine. We expect the results to indicate a high RUL 
estimation accuracy with greater error reduction rate. Furthermore, the applicability of a 
probabilistic model shown within a digital twin framework can be an important 
contribution to the existing literature which is looking for solutions to real-time update 
as new sensor information is received.  
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Introduction 
 
State of the art advancements and evolution in digital technologies are constantly 
challenging the traditional practices in many industries worldwide. The onset of what is 
seen by many as the fourth industrial revolution (Industry 4.0) finds its basis in a new 
generation of virtual reality and big-data driven models [1]. Studies such as [2]–[4] 
recognize Industry 4.0 as a paradigm shift in investment strategies of companies towards 
smart technology from an Industrial Internet of Things (IIoT) perspective. Digital twin 
technology has been recognized as a core component of Industry 4.0 with its ability to 
virtually represent the elements and dynamics of how an IIoT device operates throughout 
its life. The idea of a digital twin took shape with the vision of providing a comprehensive 
functional mirror of a component, product or system, aiming to replicate the physical 
asset’s performance in virtual space with real-time synchronization [5].  
 
As the number of wind farms grows to cope with the increasing energy demands, the 
reliability of wind turbines in addition to lowering their maintenance costs has been of an 
area of intensive research. A real world IIoT set up, such as a wind turbine drive train, has 
paved way for simultaneous monitoring of several sensors at their unique sampling rates. 
This has realized the need for artificial intelligence tools for robust data processing. 
However, the large size of input data requires real time monitoring and synchronization 
for online analysis. Even though sub-systems of such complex machinery, be it 
mechanical, electrical or hydraulic, are all independently designed and troubleshot, the 
system overall performance is only reflected during real running conditions. Owing to the 
system’s requirement of continued availability and reduced manual dependency, precise 
self-prediction and self-assessment are a digital twin’s main focus. As a part of its 
prognostic application, a digital twin can proactively identify propagating anomalies with 
its physical counterpart. Thus, RUL prediction of specific components can be facilitated 
by fusing pre-processed real time sensory data flow into a digital twin model.  
 
Prognostics and Health Management (PHM) mainly aims at predicting the RUL of a 
system or component to plan optimal maintenance. Prognostic approaches can be broadly 
classified into data-driven, physics-based and hybrid. Given their simplicity, data-driven 
approaches are mostly preferred to make RUL predictions by directly analyzing 
equipment behaviour from condition-monitoring data [6], [7]. Machine learning and 
statistical learning are the two most widely used data-driven approaches. Increasingly 
complex sequential data today requires machine learning based deep learning techniques 
for accurate non-linear processing. DTs require offline computing resources to utilize 
deep learning models. They are trained using a combination of machine learning 
algorithms and data analytic techniques to create a model of a specific target, for instance 
a flight-critical component or a high speed rotor shaft that can derive an actionable 
outcome from the model. Upon availability of historical data, the training of such 
comprehensive data-driven models for RUL prediction has been heavily researched. 
Scholars have used supervised and unsupervised learning techniques like cluster analysis, 
back propagation neural networks, Support Vector Machine (SVM) algorithm etc. to 
diagnose and predict incipient and propagating faults. A discussion on one such deep 
learning technique, LSTM-RNN, follows a detailed literature survey in this report. 
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The following sections provide an update on the study of the underlying analytics and 
machine learning techniques behind developing a digital twin for machinery prognostics 
in the form of an optimal RUL estimation application. 
 
Supporting literature review 
 
Digital twins: concept and applications 
 
Given the novelty of the DT concept, there exists little but a steadily growing literature on 
the different application specific definitions of a DT as understood by researchers from 
around the world. According to [8], [9], the DT concept is expected to have all data and 
information of a physical system replicated in software for simulation and analysis. This 
is consistent with some of the initial studies emphasizing on 3-D simulation as the core 
functionality of a DT in industries like manufacturing and design [10], [11]. However, in 
practice, this conceptual model can only embody certain essential elements like physical 
and virtual spaces and the linkage between the two [12], [13]. A heavier emphasis needs 
to be placed on the management of IIoT in a virtual, smart and manipulable space with 
better representation and communication capabilities [14], [15]. The first formal 
definition of a DT was proposed by NASA in its integrated technology road map, calling 
it a virtual equivalent of the physical system replicated for modelling, simulation and 
analysis purposes [16]. The broader aim was to have an integrated model to simulate, 
monitor, calculate, regulate and control system processes in a highly quasi-real fashion. 
 
Based on the studies conducted over the last six years, Table 1 below summarizes the 
industrial application specific definitions of DT as they appear in the literature. Most of 
the existing and some very recent studies on DT, like [17] deal with a surface level 
introduction of the topic rather than going in depth of the underlying analytics behind the 
idea. This is understandable since most DTs’ applications lie in military or other highly 
confidential and sensitive businesses. Furthermore, building a physics-based (1st 
principle or knowledge-based) DT can obviously be a complex task given the in-depth 
knowledge required to address any uncertainty due to the ignorance of the deep learning 
model parameters. The current gap in the literature can be filled by addressing 
uncertainty quantification and high fidelity real-time synchronization between the digital 
and physical counterparts. 
 
Deep learning for prognostics 
 
Deep learning (DL) is one of the most active sub-fields of machine learning research. 
Inspired by the biological brain architecture, DL refers to the supervised/unsupervised 
learning technique that can learn hierarchical patterns by stacking multiple layers of 
information processing modules in deep structures. Significant advantages that DL offers 
in predictive models are accuracy and increased processing power, thus, reducing the 
computational burden [26], [27]. Conversely, however, the deep architecture is also 
known to introduce diverse hyper-parameters during learning which can be challenging 
to optimize in the training process. Supervised DL techniques require large labeled 
training data sets in their training procedure, thus, the prediction accuracy is strongly 
reliant on the constructed run-to-failure labels. On the other hand, unsupervised 
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techniques utilize a pre-training stage for degradation feature extraction from unlabelled 
data. 
 
The literature today has come a long way from conventional data-driven DL techniques 
involving feature manual design, selection, extraction, model training etc. [28] in their 
extensive review of DL techniques on machine health monitoring study how deep neural 
networks can extract hierarchical representations from input data and perform a layer-
wise non-linear transformation into outputs. This allows learning complex concepts from 
simpler information fed as inputs and extensive human labor is reduced. Furthermore, 
the model parameters including pattern classification/ regression modules don’t have to 
be trained individually. Thus, studies like [29] have used DL techniques to train and re-
train their models for both diagnostic and prognostic applications. 
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Table 7 Application specific literature review on digital twins 

 
 
Some of the most rapidly developing DL variants prominently used in RUL predictions 
include neural networks. Convolutional Neural Network (CNN), Deep Belief Network 
(DBN), Recurrent Neural Network (RNN) and LSTM are known to have outperformed 
the traditional prognostic algorithms for RUL prediction [28], [30], [31]. LSTM in 
particular has been widely explored for prognostics and has proven to be particularly 
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efficient in supervised and semi-supervised studies. The following section provides an in-
depth overview of the LSTM architecture and the supporting literature. 
 
Long-short term memory (LSTM) network 
 
A variant of the traditional RNN, the LSTM model was initially proposed to address the 
vanishing/exploding gradient problem in RNNs [32] and further improved to avoid any 
long-term dependency issues [33]. LSTM models have since achieved great success in 
sequence learning tasks such as speech recognition and machine translation where 
hidden patterns are to be discovered. The architecture of LSTM, as shown in Figure 1.1 
below, uses a well-designed memory cell with four different gates to replace the activation 
function of hidden state in RNN. The cell state at the top, from Ct-1 to Ct, converts 
information from end to end and stores in cell memory. Within the memory cell, the 
model has three gates composed out of a sigmoid neural net layer that provide the ability 
to add or remove information to the cell state. The output value is kept from 0 to 1 for 
each number in the cell state Ct-1, where 1 represents any information is allowed to pass 
and 0 presents nothing is allowed to pass. The forget gate decides which information has 
to be discarded from the cell state. Only conditional information is stored in the cell state 
and this is decided by the sigmoid layer (input gate layer) and the tanh layer (new 
candidate values). The old cell state, Ct-1, is thus updated into new cell state Ct by forget 
gate, input gate and new memory. Lastly, the output gate decides which information will 
be converted from the cell state into the current hidden layer data. The element wise 
multiplication is fostered by weights displayed in the mathematical representations. 
 
As the flow of information is regulated in and out of the cell, the memory cell can preserve 
its state for longer duration (i.e. learning long term dependencies) and influence future 
predictions. Several impactful studies have been conducted in the field of RUL 
prognostics that confirm the same. [34] were able to reduce training time and improve 
performance using an GRU-LSTM(Gated RecurrentUnit). [35] later used LSTMto extract 
important degradation features from several operating conditions in a pre-training 
procedure and showed enhanced performance compared to RNN and GRU-LSTM. [36] 
proposed an LSTM-based deep learning method to capture degradation process and 
predict RUL. [27] tracked the raw historical machine degradation parameters and 
translated them in to health index (HI) for RUL estimation using a bi-directional LSTM 
model. Some of the more recent works on LSTM-based RUL estimation have been looking 
to build a HI instead of relying on degradation trends for RUL prediction. This is being 
done by using LSTM encoder-decoder. 
 
LSTM encoder-decoder (ED) 
 
LSTM-EDs have successfully been used for both anomaly detection [37], [38] and 
sequence-to-sequence learning tasks like natural language generation and 
reconstruction, parsing and image captioning [34], [39], [40]. Autoencoders or ED are 
artificial neural networks with symmetrical structures and at least one hidden layer that 
consists of less neurons than input and output layers. They are used to re-construct their 
inputs and learn a lower dimensional representation of input data in hidden layer. As seen 
in Figure 1, while the encoder maps a multivariate input sequence to a fixed dimensional 
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vector representation, the decoder produces target sequences using this vector 
representation. Since a multi-variate time series has variables observed over multiple 
time stamps, the LSTM model here would require certain pre-processing steps to label 
negative data, reconstruct new samples and record prediction error. These steps shall be 
discussed in further detail in the Approach Overview section. 
 

 
Figure 7 LSTM encoder-decoder 

 
The main rationale of [38] and [41] behind using LSTM-ED was to reduce the dependency 
of the traditional prognostic approaches upon the assumption that the degradation trend 
must follow a specific curve. Some of the most famous case studies in data-driven 
prognostics like [42]–[46] assumed either an exponential or linear degradation trend to 
build HI prediction models. While this approach has its benefits when the data doesn’t 
have explicit health parameters or labels, it doesn’t take into account the time taken to 
reach the same level of degradation and the effect of noisy sensor data. Besides, standard 
DL-based anomaly detection approaches do not take all variables or failure modes from 
multiple sensors into account, leading to unreliable predictions.  
 
The use of autoencoders captures system degradation without relying on domain 
knowledge or the assumption regarding degradation curve. With additional memory cells, 
LSTM-ED is able to reconstruct, and later store as embeddings, the multivariate ’normal-
behaviour’ input time series to detect anomalies, compute reconstruction error and an 
unsupervised HI for accurate RUL estimation. Given the novelty of this approach, not a 
lot of supporting literature exists that makes use of autoencoders to make accurate RUL 
predictions. 
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Approach overview 

LSTM-ED is trained to reconstruct the input time series in the form of embeddings 
corresponding to the healthy state of the system. The rationale behind using autoencoders 
for this purpose is because of their proven ability to retain underlying patterns from time 
series representation while filtering out noise. As the learned model reconstructs 
subsequences that belong only to the healthy state, the resulting high reconstruction error 
for unhealthy subsequences gives the HI at those specific time instances. The difference 
in embeddings for normal and faulty machines tends to provide the degree of degradation 
and subsequently the RUL. We consider a scenario where RUL of a system is to be 
estimated at a certain operational instance with multi-sensor historical end-of-life data 
available. For this given scenario, let the multivariate input time series data be 
represented by the equation 1.1: 
 

 
 
where x(u)t ∈ Rp and p is the dimension of the sensor data (p no. of sensors at a time t), u 
∈ U: is set of train instances of the system and Tn is the time of failure. The LSTM model 
takes each sequence of sensor measurements X(u)n and learns how to model the whole 
sequence with respect to target RUL [31]. Let the Time Sequence of the i-th sensor 
measurement be given by the equation 1.2: 
 

 
 
where i = (1, 2, …, p), t = (1, 2, …, Tn). Let the sensor data be z-normalized over all U 
instances such that x(u)ti is the sensor reading at time t for sensor i at instance u be 

transformed to 
𝑥𝑡𝑖

(𝑢)
−𝜇𝑖

𝜎𝑖
 where µi and σi are the mean and standard deviation for the i-th 

sensor data. Equation 1.3 below denotes a sub sequence of length l from the original input 
time series X n (u) represented by: 
 

 
such that 1 ≤t ≤ L(u)-l+1. 
 
As seen in the many previous case studies like [46], [47], correlated multi-sensor data 
require an unsupervised pre-training stage for degradation feature extraction before the 
DL model can perform any supervised fine-tuning. Many times, the sensor data is 
inconsistent and requires a clustering algorithm for regime partitioning. This allows for a 
potentially more accurate RUL prediction. PCA has also previously been used in multi-
sensor prognostics to reduce data dimensionality and preparing the validation set. Other 
studies like [48], [49] used PCA to observe the different operating condition patterns and 
build a HI for their case studies. The following sections break down the details of this 
approach in depth and explain the methodology of RUL estimation. 
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RUL estimation using embeddings 
 
Although studies like [41], [42], [45] have estimated their machines’ HI trend using a 
linear regression approach, thus assuming an exponential degradation, the drawbacks of 
such estimation have been stated in the previous section of this report. Referring to 
equation 1.2, every failed instance in (u)Tn corresponds to the total operating life and in 
equation 1.3, the input time series has been segmented into fixed length subsequences or 
windows. The encoder of our LSTM model can be trained in an unsupervised fashion to 
estimate health at the end of the fixed length Xn(u)(t, l). As seen in figure 2, the embeddings 
for these subsequences at the end of their fixed length retain important degradation 
related information and provides with the reconstruction error for healthy and faulty 
states. The following sections explain this process in detail. 
 

 

Figure 8 RUL Estimation steps using unsupervised HI based on LSTM-ED 

 
Encoder-decoder based embeddings 
 
We have discussed how LSTM-ED works in the ED section based on a sequence-to-
sequence (seq2seq) framework, consisting of multi-layered DL models trained together. 
The RHS of equation 1.3 are the time series data points an LSTM encoder iterates through 
till they reach the final hidden state zl of a fixed dimension. The decoder on the other hand 
uses this zl as its initial hidden state to reconstruct the input time series by performing 
gated transformation as seen in the equations in figure 1.1. The detailed mathematics 
behind this transformation can be found in [41]’s case study and the non-linear mapping 
of fixed dimensional time series between encoder and decoder is explained by figure 3 
below. The representation of the encoder function as its final hidden state is basically the 
embedding to be learned. The reconstruction sequence (zt’) and error (et(u)) obtained 
using LSTM-ED can mathematically be explained as equations 1.4 and 1.5 below 
respectively: 
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Figure 9 Encoder-decoder based reconstruction model 

 
The LSTM-ED model is trained to minimize the loss function by squaring reconstruction 
error, provided by equation 1.6 below: 
 

 
 
As no additional inputs are provided to the decoder following its initial hidden state from 
encoder, sufficient information required to reconstruct the time series is stored by the 
decoder. If the resulting output, the reconstructed time series is smooth, it means that the 
embeddings learned are able to retain the necessary degradation patterns from the input. 
 
Obtaining HI and RUL prediction 
 

The obtained encoder function or the embedding with important patterns can be used to 
highlight any differences between the healthy and faulty data. As the deterioration 
progresses over time, the healthy embeddings are used to train each subsequence of the 
original input series to provide prediction error. This difference between actual and 
predicted values is calculated to be the target normalized HI for that specific data point, 
represented by equation 1.7: 
 

 
 

where eM(u) and em(u) are the maximum and minimum values of reconstruction errors for 
u instances. The HI can have a value between 0 and 1, with 0 being very poor health and 
1 being very healthy or normal. Most studies estimating HI use some scaling or 
normalizing procedure. The obtained HI curves for train and test instances are later 
matched for similarity (Equation 1.8) by varying the Euclidean distance between the two. 
The actual RUL prediction of the ground truth or test data is performed by the algorithm 
counting the number of train instances left after the last cycle of the test instance. If Hu* 
and Hu are the train and test instance HI curves, then their similarity can be quantified 
by: 
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where t is the time lag introduced to scale the inequality between the curves, d is the 
Euclidean distance and λ is an arbitrary parameter controlling similarity such that a 
smaller λ would mean less similarity and vice-versa. The weighted average RUL for the 
testing instance can be given by equation 1.9 below: 
 

 
 

Experimental evaluation 
 

Data description 
 
The proposed model is used to calculate the RUL on NASA’s famous C-MAPSS dataset for 
turbofan engine performance degradation and prognostics, generated from [42]. The data 
set is a multivariate time series representing turbofan engine usage from beginning till 
the end of its life. The data can be considered to be from a fleet of engines of the same 
type. Each entry (row) in the data set reflects an operational cycle of a specific engine 
identified by engine id and cycle time. There are multiple entries per engine to represent 
different reporting times. Other columns represents different features like 3 operational 
settings and 21 sensors. 
 
The C-MAPSS data set is divided into 4 subsets each for training, test, and RUL (FD001, 
FD002, FD003, FD004) and each subset can have a 100 instances. A subset can have a 
different operational condition and consists of a different number of engines. In the 
training set, the last id, cycle entry is when the engine is declared unhealthy. For example 
if the first engine has 192 distinct time series events the cycle will go from 1 to 192, while 
the RUL will start with 192 and go down to 1. If the time series for an engine in the test 
data ends at 41, the model’s goal is to identify the RUL at that point. Figure 4 below shows 
a random sample plot of 10 engines from sensors 7 to 12 from the training data. While 
there is some visible noise, we can say that not all engines display degradation at the same 
time and there is no necessary correlation between the data as the engine approach 
failure. Also, the data can be affected by incorrect sensor placement or other human error 
as might be the case in plots from sensor 10. There are a total of 20631 cycles for training 
engines and 13096 cycles for testing engines with each engine having a different degree 
of initial wear. 
 

 

Figure 10 Data visualization sample of 10 random engines from sensors 7 – 12 
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Performance metrics 
 
The LSTM network built for this experiment has 100 units in its first layer followed by 
another LSTM layer with 50 units. Dropout is also applied after each LSTM layer to 
control over fitting. The literature proposes several performance metrics to evaluate the 
performance of prognostic models. The proposed LSTM-ED model is evaluated on 
metrics such as Mean Absolute Error (MAE), Coefficient of Determination (R2) and Model 
Loss [50]. Figure 5 provides the metric scores used. 
 

 

Figure 11 Robustness evaluation 

 
Results: embedding RUL 
 
Table 2 shows the performance of the proposed LSTM-ED model for Embedding RUL (HI 
similarity) approached as compared against benchmark models from previous studies 
like the Linear Regression based exponential curve assumption (LR-Exp) and 
reconstruction error based RUL (Recon-RUL) and their results as obtained. Figure 6 
shows the final RUL of a random fleet of engines taken from each of the test files. The 
parameters chosen are the number of principal components p, the number of LSTM units 
in the hidden layers of encoder and decoder c, window/subsequence length l, maximum 
allowed time-lag τ, similarity threshold, maximum predicted RUL Rmax and the λ 
parameter. The blue line reflects the actual RUL while the orange line is the predicted 
RUL. The actual RUL values are taken from the ground truth or actual RUL files. The 
earlier values seem to have monotonically increased from this point. We can say that to 
the best of our knowledge, the proposed approach scores higher on the performance 
metrics and the future work will be to further test the approach against other approaches 
from literature and also increase the number of metrics that this comparison will be based 
on. 
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Table 8 Performance of LSTED-ED model for embedding RUL 

 

 

Figure 12 RUL of random set of engines from test files 
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Digital twin of reheat furnace 
Kuilin Chen 
 

Introduction 
 
Digital twin is one of the core concepts in Industry 4.0 with the integration of Internet of 
Things, artificial intelligence, and optimal decision making. The definition and 
application of digital twin is reviewed at the beginning of this article, followed by detailed 
design and development of digital twin for a reheat furnace through data-driven 
modelling. Finally, a dynamic generative network model is proposed to approximate the 
behavior of an industrial furnace 
 
Literature review 
 
In recent years, Industry 4.0 has become an emerging concept with the amazing growth 
and advancement in digital technologies that allow the integration of Internet of Things 
(IoT), cloud computing and artificial intelligence, etc. [Lasi et al., 2014, Jazdi, 2014]. In 
this fourth wave of industrial revolution, traditional manufacturing companies make huge 
investment to digitize their assets to take the advantage of smart factory, decentralized 
organization and flexibility to increase their efficiency and profitability in competition 
[Drath and Horch, 2014, Wan et al., 2016, Zhou et al., 2015]. Among several fundamental 
concepts within Industrial 4.0, digital twin (DT) plays a central role because it bridges the 
assets and processes in the physical world with the models and analytics at the virtual 
space in the real-time fashion [Babiceanu and Seker, 2016]. Essentially, DT can provide 
company with complete digital footprint of their products and equipment for the entire 
life cycle, leading to deep understanding of product development and equipment health 
conditions [Qi and Tao, 2018]. With the real-time synchronization of floor shop in 
physical world and integrated models and software in virtual space, manufacturing 
companies are able to detect and solve physical issues in product and equipment sooner, 
predict outcomes at high fidelity, design and build better products, and, ultimately, better 
serve their customers. Therefore, the DT concept becomes more and more prevalent in 
both industry and academia by boosting company’s revenue through rapid product 
development, improved operation efficiency, reduced defect rate and optimized 
maintenance schedule. 
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Definition of digital twin 
 
Although DT is a very new concept without a universal definition, researchers from 
different areas have attempted to define it in several different ways based on problems 
and issues they want to solve within the Industrial 4.0 framework in their area. The 
conceptual model of a virtual, digital equivalent to a physical product is proposed in 2003, 
with the expectation that all the data and information of a physical system could be 
replicated in software for simulation and analysis. [Grieves, 2011, Grieves and Vickers, 
2017]. That conceptual model, though not being called as DT, but embodies all essential 
parts of DT, such as the physical space, the virtual space, and the linkage or interface 
between the two spaces [Cerrone et al., 2014, Bajaj et al., 2016]. DT is formally defined 
through a case study by NASA and US air force as an integrated simulation models of an 
as-built vehicle based on the best available information, and history data to reflect wear 
and tear of its corresponding physical twin while in use communicated by sensor updates 
[Glaessgen and Stargel, 2012, Tuegel et al., 2011]. Researchers in aerospace community 
develop various digital twins to mirror the health conditions of a aircraft or parts by 
integration with other aspects such as product life-cycle management (PLM), feedback 
from real world, and prognostics and diagnostics activities [Tuegel et al., 2011, Gockel et 
al., 2012, Reifsnider and Majumdar, 2013]. The concept of digital twin is expanded as a 
digital counterpart product to its physical instance, which could be used for products from 
any manufacturing industries, though their research focus is still on manufacturing of air 
vehicles [Ríos et al., 2015].  
 
Thanks to the rapid development in data acquisition, cloud computing and big data 
technologies in manufacturing industries, DT is also developed and defined in 
manufacturing industries as a virtual counterpart of production resources based on 
coupled models to simulate the condition of the equipment and machines [Lee et al., 
2015]. In parallel, the idea of DT is closely integrated with some ongoing research of 
cyber-physical system (CPS) and virtual factory (VF) in smart manufacturing area [Alam 
and El Saddik, 2017]. Simulation is a core functionality of DT in manufacturing, which 
provides seamless assistance and support for operation and service by means of direct 
linkage of operation data [Rosen et al., 2015]. Along with the view of simulation, DT is 
composed of very realistic models of the process current state and its behavior in 
interaction with the environment in the real world [Gabor et al., 2016]. On the other hand, 
DT also provides a new mechanism to manage IoT with virtual substitutes of real world 
objects consisting of virtual representations and communication capabilities making up 
smart objects acting as intelligent nodes inside the internet of things and services 
[Canedo, 2016, Schluse and Rossmann, 2016].  
 
Application of digital twin 
 
By definition, DT is designed to model sophisticated assets or processes with iteration to 
external environment, which are very difficult to quantify by traditional methodologies. 
As such, it is beneficial to review the current application of DT in a wide range of contexts 
to understand why and how DT is created and implemented before actually developing 
DT for any particular assets or processes. 
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DT was initially developed for aerospace vehicles because it’s impossible to reproduce the 
extreme thermal, mechanical, and acoustical loadings in a laboratory environment to 
understand the health condition of the vehicle. However, health condition of the 
aerospace vehicle cannot be obtained from traditional simulation methods because they 
are not able to integrate the sub-models at different scale or handle the stochastic input 
data from external environment. Therefore, an integrated multiphysics, multiscale, 
probabilistic simulation of an as-built vehicle is developed as a digital twin to mirror the 
conditions of aerospace vehicle in actual flying [Glaessgen and Stargel, 2012]. The finite 
element method (FEM) model for local structural loads and computational fluid 
dynamics (CFD) model for artificially flying the aircraft, at different geometric scale, are 
closely coupled to predict the local structural damage and material state in repose to flight 
conditions, with the auxiliary of computer aided design (CAD) [Tuegel et al., 2011, Tuegel, 
2012, Kraft, 2016]. Nevertheless, neither mathematical modelling details nor 
performance statistics of DT is provided in those early papers.  
 
Recently, an FEM based DT with modelling details was presented to monitor structural 
health condition. Heuristic optimization algorithm is utilized to identify key parameters 
in the model, leaning to accurate monitoring results with comparison to real reference 
data [Seshadri and Krishnamurthy, 2017]. The aforementioned aircraft or airframe health 
condition monitoring is based on deterministic physical models within DT, which cannot 
handle epistemic uncertainty due to lack of knowledge. Consequently, machine learning 
algorithms such as particle filter driven dynamic Bayesian network are developed as an 
extra layer above the physical model based DT to get accurate prognostics and diagnostics 
results through stochastic input-output data from DT [Li et al., 2017]. 
 
Besides the aerospace field, DT is well received in smart manufacturing environment, 
especially with the wave of promoting Industry 4.0. DT has been endowed with new 
functionality and usage when applied to industrial processes in manufacturing area, 
beyond the scope of prognostics and diagnostics activities. Apart from acting as digital 
replica for physical assets at floor shop, DT of manufacturing processes is also developed 
to provide insightful guidance to improve production efficiency. For instance, a DT of an 
additive manufacturing process, using multiple analytical sub-models including heat 
transfer models and fluid dynamics models, is built to predict the spatial and temporal 
variations of metallurgical parameters, which is proved to be highly accurate with 
validation of experiment data [Knapp et al., 2017, DebRoy et al., 2017]. Meanwhile, a 
rapid DT design framework is proposed by adopting the idea of reference models, which 
refers to producing a copy of a production line and using it for reasoning about other 
instances of the similar production line. A DT based on such rapid development provides 
decoupling analytics for a hollow glass production line, as well as multi-objective 
optimization towards decision making [Zhang et al., 2017]. 
 
Gap in current research 
 
Since the idea of DT was proposed in 2010s, a dozen of papers have been published 
around this topic. However, after thorough literature review, it is found that most of them 
are review and introduction papers about potential application of DT in different areas 
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without any detailed examples. Table 1 lists all reviewed original research papers, which 
propose methodologies to build DT for a specific system or process. 
 

Table 9 Digital twin examples 
 

 
 
Although a mathematical model is an essential part of DT and almost every DT example 
listed in Table 1 uses different forms of mathematical models, the majority of current 
published papers do not provide any model details. No matter model details are provided 
or not, first-principle models or physical models are used in aforementioned examples. 
Identification of such models with nonlinear equations is a non-trial mathematical 
optimization problem. Apart from one paper explicitly using genetic algorithm, none of 
them illustrates how to identify the parameters in models. Such practice in current DT 
literature makes it extremely difficult to duplicate the methods proposed by those DT 
papers, though it is understood that some systems, products and processes contain highly 
confidential and sensitive information in business and military.  
 
In addition, development of DT upon first-principle models requires in-depth knowledge 
of the system or process, and takes significant effort and time of experienced engineers. 
It is inevitable that some knowledge is not available for some very complex systems, 
leading to epistemic uncertainty in models due to lack of knowledge. Furthermore, less 
than half of the papers in Table 1 present the performance statistics of DT by comparison 
to its twin in physical world. DT itself is meaningless without high fidelity output 
compared with the physical system. Development of DT is not a one-time deal. Mismatch 
between the DT and physical system can happen due to equipment deterioration and 
external environmental change. How to develop an adaptive DT has not been studied yet. 
 
It is an overwhelming task to develop DT for all processes and equipment in a 
manufacturing company all at once. A reasonable plan for digitalization of a tradition 
manufacturing company is to develop an initial DT for one chosen process along with its 
equipment, deliver value there, and continue to develop for other processes. The 
remaining of this article is organized as follows. Development of DT for a reheat furnace 
in a steel manufacturing company is discussed in details in the next section, followed by 
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some preliminary results. Finally, we conclude our current work and propose some 
research ideas regarding development of DT for reheat furnace. 
 
Design of digital twin for reheat furnace 
 
The fundamental goal of the digital twin is to predict the output (slab drop-out-
temperature and through-put) of reheat furnace with high fidelity. Due to the complexity 
of the reheat furnace system, the digital twin of reheat furnace can be decomposed into 
combustion system model, slab temperature model, control systems and simplified down 
stream model. In addition, the output of one subsystem can be the input for another 
subsystem. The mathematical details of subsystem models are presented in following 
subsections. 
 
Combustion zone model 
 
The reheat furnace consists of 12 combustion zones which control the zone temperature 
independently. In principle, the combustion zone temperature change Δzt between 
current zone temperature zt and last zone temperature zt-1 is drive by the air flow at and 
gas flow gt through an unknown mapping function fp(·) as follows  
 

 
 
where ϵzt is the noise or disturbance. The air flow at and gas flow gt are controlled by the 
zone temperature set point spt via a proportional-integral-derivative (PID) controller as 
follows 
 

 
 

where ezt = spt - zt is the difference between the temperature set point and actual zone 
temperature, Kpa, Kia, Kda, Kpg, Kig and Kdg are the proportional, integral and derivative 
gains for air flow at and gas flow gt respectively. It is not desirable to identify fp(·)  and 
predict zone temperature zt using Eqs. 1 and 2 for several reasons. First, the model 
requires data from infinite past due to the integral part in Eq. 2. Second, the actual air 
and gas flows are subject to random disturbance, variation in air and gas composition and 
actuator failure which cannot be characterized by Eq. 2. The zone temperature prediction 
may not be accurate due to the propagation of errors. Third, it’s very difficult or 
intractable to optimize the slab temperature performance or throughput based on this 
digital twin because the order of decision variable (temperature set point) is too large. 
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The best practice in control system optimization is to identify a transfer function fc(·) 
between the input and output variables. Eq. 1 and Eq. 2 are equivalent to the transfer 
function as follows  

 

 
 

For a meaningful model, the orders of zone temperature and set points are truncated to r 
and s, respectively. Let vector xt = [zt-1, …, zt-r, spt-1, …, spt-s]T denotes the stacked past 
temperature and set points. The combustion zone model can be expressed as follows 
 

 
 

where ω denotes the vector for model parameters and ϵzt is the model error term between 
measured zone temperature zt and modelled zone temperature 𝑧�̂� = 𝑓𝑐(𝑥𝑡, 𝜔). The task of 
combustion zone model design is to find an appropriate model structure and model order 
(r and s) based on available data and knowledge about the combustion system to obtain 
minimized prediction error from the identified combustion zone model. The 
identification process is to find a fc(·) with given structure and model orders by 
minimizing the error term as follows  
 

 
 
where N is the total available number of samples and ̂ ! is the estimated model parameter 
vector. 
 
Different from traditional simulation models, digital twin can be synchronized with the 
physical system. The frequency of synchronization depends on the purpose of digital twin. 
Due to the randomness in combustion system, the output from the digital twin can never 
be the same as the physical system. At each round of synchronization, the current 
predicted output can be calibrated by the real output data from physical system. The 
calibrated value can be used for future prediction. In addition, the dynamics in the 
transfer function is subject to change because the combustion system is a stochastic 
system. �̂� can be updated to capture the current dynamics in the system using the latest 
data from synchronization.  
 
Slab temperature model 
 
After a slab is charged into reheat furnace, it goes through different combustion zones 
when it travels from the charge side to discharge side. Due to the nature of digital 
computer control, the slab temperature model st is a discrete time model computed at a 
fixed time interval (30 seconds) as follows: 
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where �̂�𝑡 is the predicted slab temperature, ϵst is the error term, h is the heat transfer 
coefficient based on thickness and chemistry composition of slab and fs(·) is a known 
nonlinear heat transfer function available on reheat furnace control system. Note that 
only the initial charge temperature s0 and final drop-out-temperature sT can be measured. 
The future slab temperature is predicted based on current predicted slab temperature 
because no slab temperature measurement is available inside the furnace. 
 
The design of slab temperature model in digital twin can be as simple as duplicating fs(·) 
from reheat furnace control system. The input to the model is initial charge temperature 
s0 and zone temperature zt that can be calculated by model described in the combustion 
zone model. 
 
Control system 
 
The control system sets up the heating trajectory for each slab at charge time and 
computes the combustion zone set points for all zones and reheat furnace pacing 
dynamically at a fixed time interval (30 seconds). The set point of a combustion zone is 
calculated based on the temperature of all slabs in that zone with respect to their current 
temperature targets from the heating trajectory as follows:  
 

  
 

where j = {1, …, K} denotes all slabs at one zone. Meanwhile, pace rate is calculated for 
each slab inside the furnace based on their current temperature and target. The furnace 
pacing is dominated by the slowest slab inside the furnace. 
 

 
 

where j = {1, …, N} denotes all slabs inside the furnace, pjt represents the pace rate for an 
individual slab, pt is the pace rate for the furnace. Eqs. 7 and 8 should be duplicated in the 
digital twin of reheat furnace to get the same control action behavior as the physical 
system. 
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Simplified downstream model 
 
The reheat furnace requires downstream processing time. On the one hand, the slab 
temperature target relies on the predicted downstream processing time. On the other 
hand, the actual throughput is also affected by the downstream processing time because 
a slab cannot be extracted if the downstream processing is not complete. A simplified 
model can be developed to predict the downstream processing time. 
 

 
 

where d1 is the original dimension (width, thickness and length) of the steel before 
downstream processing, d2 is the final dimension of steel, c is a vector of slab 
characteristics such as chemistry composition, hardness, steel grade and special 
processing requirement. The input to gd(·) includes both continuous and categorical data, 
and the relationship between input and output can be quite nonlinear. In this case, deep 
neural network could be a good candidate for simplified downstream model to predict the 
processing time. 
 
Preliminary example for combustion zone model 
 

A preliminary example of combustion zone model is demonstrated in this section. It can 
be treated as a toy example for digital twin of reheat furnace. Several transfer function 
identification methods are considered and compared in this section, including Box-Tiao 
transformation based ARMAX model, PEM based ARX model and gated recurrent unit 
(GRU) network. Diebold-Mariano test is used to compare the prediction accuracy 
between models. Finally, future research path is discussed based on pros and cons of all 
methods on the numerical performance on temperature control system identification. 
 
System identification of combustion zone 
 
System identification is the process of using appropriate mathematical models and 
optimization algorithms to determine a relationship between future outputs yt and past 
observations of inputs ut-i and outputs yt-i by minimizing the error between measured 
outputs and model outputs. Without loss of generality, the input-output relationship can 
be expressed as follows: 
 

 
 

where ϵt is the error between measured and predicted system output at time t, while b, p, 
r and d denote input delay, input lag, output lag and error lag, respectively. 
 
ARMAX model 
 

Liner transfer function can be an Auto-Regressive Moving-Average with exogenous input 
(ARMAX) model, which relates the current model output, past inputs, past outputs and 
past prediction errors [Box et al., 2015]. The ARMAX model can be expressed as follows: 
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where ϕi, ωi and θi are the ARMAX model parameters. The ARMAX model can be 
identified by the Box-Tiao method in an iterative way [Box and Tiao, 1975]. A group of 
preliminary AR orders p and MA orders q can be selected on autocorrelation function 
(ACF) plot and partial autocorrelation function (PACF) plot. The final model order is 
determined by Akaike information criterion (AIC). The prediction residuals of ARMAX 
model identified by Box- Tiao method is guaranteed to be uncorrelated. 
 
GRU network 
 
Neural network has been widely used for time series forecasting since 1980s due to its 
strong capability to approximate nonlinear relationship between past and future data 
[Hunt et al., 1992, Narandra and Parathasarathy, 1990]. The recent emergence of deep 
learning and efficient learning algorithms have enhanced the modelling and prediction 
capability of NN, but traditional feedforward NN cannot use its reasoning about previous 
input-output data to inform future ones. Recurrent neural networks (RNN) are perfect 
for time-series forecasting because they are networks with loops inside them, allowing 
memory of past information to persist [Funahashi and Nakamura, 1993]. In Fig. 1, input 
xt is fed to a neural network unit A with an output value ht. The output of current step of 
the network is passed to the next step. The directed acyclic graph of RNN can be unrolled 
as Fig. 1 and the unrolled chain-like structure reveals that it’s intimately related to time 
series. 

 

 
 

Figure 13 Unfolded recurrent neural network 

 
In practice, RNN is not able to handle the long-term dependencies in time series well and 
it also suffers from gradient vanishing problem. The long short-term memory (LSTM) 
networks are a special kind of RNN, with recurrent gates called forget gates to avoid the 
long-term dependency problem [Hochreiter and Schmidhuber, 1997]. LSTM also 
prevents gradient vanishing or exploding in network training. More recently, GRU 
without an output gate is developed as one of the most notable LSTM variants [Cho et al., 
2014]. GRU is chosen in this study because it has simpler structure and fewer parameters 
but leads to better performance than traditional LSTM [Greff et al., 2017, Jozefowicz et 
al., 2015]. The structure of a GRU is show in Fig. 2 and the mathematical details are 
presented below. 
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where ◦ denotes the Hadamard product, σ(·) is sigmoid function, ft is the forget gate’s 

activation, it is the input gate’s activation, Ct is the cell state, �̃�𝑡 is the new candidate cell 
state, ot is the output gate’s activation, W* and b* are weight and bias term for each gate 
to be identified through network training. 
 

 
 

Figure 14 GRU 

 
The neural network training process is to find the optimal network parameters (Ф = [W, 
b]) by minimizing a cost function, which can be the mean squared error between 
network’s predicted output �̂�𝑡 = ℎ𝑡 and measured output yt, 
 

 
 
where λ is a regularization term to prevent overfitting. Stochastic gradient descent (SGD) 
algorithm is utilized to update each parameter in the direction of negative gradient of the 
cost function with respect to the corresponding parameter as follows 
 

 
 
where α is the learning rate in SGD algorithm [Goodfellow et al., 2016]. A local minima 
can be found by SGD algorithm because Eq. 13 is a high-dimensional non-convex 
optimization problem. In order to find the best parameters of GRU, parameters are 
initialized at different values randomly in various training rounds. 
 
Numerical results 
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The root mean squared error (RMSE) of predicted future temperature by three methods 
are shown in Tab. 2. RMSE of training and test data sets are calculated based on one-step 
ahead prediction. One-step ahead prediction can be used as input iteratively to get 
multistep ahead time-series generation. It’s obvious that GRU performs much better in 
both one-step and multi-step ahead predictions. 
 

Table 10 Prediction performance – RMSE 
 

 

 

Figure 15 Generated time-series by ARMAX 

 

Figure 16 Generated time-series by GRU 

 
Generative model 
 
Introduction to generative model 
 
The task of generative models is to generate new samples from the probabilistic 
distribution pD(x), defined over high-dimensional data x (image, text, audio, or other 
time-series sequences). Since the true probabilistic distribution pD(x) is unknown, a 
modeled probabilistic distribution pθ(x) is proposed as a generative model. However, 
direction optimization over pθ to approximate pD is not feasible due to high 
dimensionality. Instead, a latent variable z with fixed prior distribution p(z) is introduced 
and passed through a deep neural network to generate x. Generative adversarial networks 
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(GANs) and variational autoencoders (VAEs) are two popular generative model 
approaches. GANs simultaneously train two models: a generative model that maps from 
a latent variable z to data x, and a discriminative model that discriminates between 
generated samples and training samples [Goodfellow et al., 2014]. On the other hand, 
VAEs are composed on of an probabilistic encoder that produces a simple distribution 
over latent variable z where training data point x could have been generated, and a 
probabilistic decoder that reconstruct x from z [Kingma and Welling, 2013]. 
 

 

Figure 17 Solid lines denote the generative model pθ(z) pθ(x|z), dashed lines denote the 
variational approximation pϕ(x|z). The variational parameters ϕ are learned jointly with 

the generative model parameters θ. 

 

The generative process in GANs and VAEs cannot be explicitly controlled. Hence, 
conditional generative adversarial networks (CGANs) and conditional variational 
autoencoders (CVAEs) are developed to model latent variables z and data x, both 
conditioned on external input u [Mirza and Osindero, 2014, Sohn et al., 2015]. However, 
the external input in CGANs and CVAEs is limited to categorical data. 
 
Dynamic generative model conditioned on external input 
 
It is assumed that the observations (combustion zone temperature) x = [x1, x2, …, xT] 
come from a latent state z = [z1, z2, …, zT], whose evolvement over time is driven by 
external control input (temperature set point) u = [u1, u2, …, uT]. The initial latent state 
is z0 = 0. This system can be formulated as a general probabilistic state space model (SSM) 
as follows: 

 
 

where pθz (zt|ut, zt-1) is the prior transition distribution and pθx(xt | zt) is the emission 
distribution. SSM can be used to generate temporally correlated sequence, but traditional 
SSM is not capable of modelling long sequence with complex structure. In parallel, this 
system can also be modelled by RNNs through a hidden state ht. Modern RNNs (e.g. 
LSTM and GRU) are capable of modelling long time-series through gated internal 
memory unit, but the deterministic hidden unit ht can not be used to generate sequence. 
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Figure 18 Graphical models to generate x1:T with a recurrent neural network (RNN) and a 
state space model (SSM). Rectangle-shaped units are used for deterministic states, while 

circles are used for stochastic ones. 

The joint probability of observations and latent states can be factorized as 
 

 
 

Let the prior transition distribution pθz = N(µzt ;Σzt) be a Gaussian distribution whose mean and variance are 

parameterized by neural networks. In the emission distribution pθx(xt | zt), xt depends on 
zt through a neural network that is parameterized by θx. The generative model described 
by the joint density in Eq. 16 is parameterized by θ =[θx , θz]. To generate samples that are 
merely like x through pθx(xt | zt), we have to sample values of z that are likely to produce 
x. This means that we have to sample from the posterior distribution pθ(z | x, u), which 
is computationally intractable. An approximate posterior distribution qϕ(z | x, u) is 
proposed to obtain the lower bound of the marginal likelihood 
 

  
 

Negating both sides, rearranging, and contracting part of Ez~qϕ into a KL-divergence 
terms yields: 
 

 
 

where L(θ, ϕ) is the evidence lower bound (ELBO) because KL-divergence is non-
negative. As such, maximizing the marginal likelihood pθ(x|u) is equivalent to 
maximizing ELBO L(θ, ϕ) w.r.t. variational parameters ϕ and generative parameters θ. 
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When qϕ(z |x, u) and pθ(z|u) are Gaussian distributions, DKL[qϕ(z|x, u) || log pθ(z|u)] 
can be computed analytically. 
 

 

Figure 19 A dynamic generative model pθ for a sequence x1:T . Posterior inference of z1:T is 
done through an inference network qϕ, which uses a bidirectional-RNN to approximate the 

nonlinear dependence of zt on future observations xt:T and states ut:T 

 

 
 
Numerical results 
 
Some initial results from the proposed dynamic generative network are shown below. 
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Figure 20 Generated time-series by dynamic generative model 

 
References 
 
K. Alam and A. El Saddik. C2ps: A digital twin architecture reference model for the cloudbased cyber-
physical systems. IEEE Access, 5:2050–2062, 2017.  
R. F. Babiceanu and R. Seker. Big data and virtualization for manufacturing cyber-physical systems: A 
survey of the current status and future outlook. Computers in Industry, 81: 128–137, 2016.  
M. Bajaj, B. Cole, and D. Zwemer. Architecture to geometry-integrating system models with mechanical 
design. In AIAA SPACE 2016, page 5470. 2016.  
G. E. Box and G. C. Tiao. Intervention analysis with applications to economic and environmental problems. 
Journal of the American Statistical Association, 70(349):70–79, 1975.  
G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series analysis: forecasting and control. 
John Wiley & Sons, 2015. 
A. Canedo. Industrial iot lifecycle via digital twins. In Proceedings of the Eleventh IEEE/ACM/IFIP 
International Conference on Hardware/Software Codesign and System Synthesis, page 29. ACM, 2016. 
A. Cerrone, J. Hochhalter, G. Heber, and A. Ingraffea. On the effects of modeling asmanufactured geometry: 
toward digital twin. International Journal of Aerospace Engineering, 2014, 2014. 
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning 
phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of 
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734, 2014. 
T. DebRoy, W. Zhang, J. Turner, and S. Babu. Building digital twins of 3d printing machines. Scripta 
Materialia, 135:119–124, 2017. 
R. Drath and A. Horch. Industry 4.0: Hit or hype? IEEE industrial electronics magazine, 8(2):56–58, 2014. 
K.-i. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time recurrent 
neural networks. Neural networks, 6(6):801–806, 1993. 
T. Gabor, L. Belzner, M. Kiermeier, M. T. Beck, and A. Neitz. A simulation-based architecture for smart 
cyber-physical systems. In Autonomic Computing (ICAC), 2016 IEEE International Conference on, pages 
374–379. IEEE, 2016. 
E. Glaessgen and D. Stargel. The digital twin paradigm for future nasa and us air force vehicles. In 53rd 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th 
AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, page 1818, 2012. 
B. Gockel, A. Tudor, M. Brandyberry, R. Penmetsa, and E. Tuegel. Challenges with structural life forecasting 
using realistic mission profiles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics 
and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, page 1813, 
2012. 
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 
Generative adversarial nets. In Advances in neural information processing systems, 2672–2680, 2014. 
I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge, 2016. 



95 

 

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search space odyssey. 
IEEE transactions on neural networks and learning systems, 28(10): 2222–2232, 2017. 
M. Grieves. Virtually perfect: Driving innovative and lean products through product lifecycle 
management. Space Coast Press, 2011. 
M. Grieves and J. Vickers. Digital twin: Mitigating unpredictable, undesirable emergent behavior in 
complex systems. In Transdisciplinary perspectives on complex systems, pages 85–113. Springer, 2017. 
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8): 1735–1780, 1997. 
K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop. Neural networks for control systems–a survey. 
Automatica, 28(6):1083–1112, 1992. 
N. Jazdi. Cyber physical systems in the context of industry 4.0. In Automation, Quality and Testing, 
Robotics, 2014 IEEE International Conference on, pages 1–4. IEEE, 2014. 
R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. 
In International Conference on Machine Learning, pages 2342–2350, 2015. 
D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. 
G. Knapp, T. Mukherjee, J. Zuback, H. Wei, T. Palmer, A. De, and T. DebRoy. Building blocks for a digital 
twin of additive manufacturing. Acta Materialia, 135:390–399, 2017. 
E. M. Kraft. The air force digital thread/digital twin-life cycle integration and use of computational and 
experimental knowledge. In 54th AIAA Aerospace Sciences Meeting, page 0897, 2016. 
H. Lasi, P. Fettke, H. Kemper, T. Feld, and M. Hoffmann. Industry 4.0. Business & Information Systems 
Engineering, 6(4):239–242, 2014. 
J. Lee, B. Bagheri, and H. Kao. A cyber-physical systems architecture for industry 4.0-based manufacturing 
systems. Manufacturing Letters, 3:18–23, 2015. 
C. Li, S. Mahadevan, Y. Ling, S. Choze, and L. Wang. Dynamic bayesian network for aircraft wing health 
monitoring digital twin. AIAA Journal, 55(3):930–941, 2017. 
M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.  
K. Narandra and K. Parathasarathy. Identification and control of dynamic systems using neural networks. 
IEEE Trans. on Neural Networks, 1(1):4–27, 1990. 
Q. Qi and F. Tao. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree 
comparison. IEEE Access, 6:3585–3593, 2018. 
K. Reifsnider and P. Majumdar. Multiphysics stimulated simulation digital twin methods for fleet 
management. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 
Conference, page 1578, 2013. 
J. Ríos, J. Hernández, M. Oliva, and F. Mas. Product avatar as digital counterpart of a physical individual 
product: Literature review and implications in an aircraft. In ISPE CE, pages 657–666, 2015.  
R. Rosen, G. Von Wichert, G. Lo, and K. D. Bettenhausen. About the importance of autonomy and digital 
twins for the future of manufacturing. IFAC-PapersOnLine, 48(3): 567–572, 2015.  
M. Schluse and J. Rossmann. From simulation to experimentable digital twins: simulationbased 
development and operation of complex technical systems. In Systems Engineering (ISSE), 2016 IEEE 
International Symposium on, pages 1–6. IEEE, 2016.  
B. R. Seshadri and T. Krishnamurthy. Structural health management of damaged aircraft structures using 
digital twin concept. In 25th AIAA/AHS Adaptive Structures Conference, page 1675, 2017.  
K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional generative 
models. In Advances in neural information processing systems, pages 3483–3491, 2015.  
F. Tao and M. Zhang. Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. 
IEEE Access, 5:20418–20427, 2017. 
E. Tuegel. The airframe digital twin: some challenges to realization. In 53rd AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures 
Conference 14th AIAA, page 1812, 2012.  
E. Tuegel, A. Ingraffea, T. Eason, and S. Spottswood. Reengineering aircraft structural life prediction using 
a digital twin. International Journal of Aerospace Engineering, 2011.  
J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos. Software-defined industrial internet 
of things in the context of industry 4.0. IEEE Sensors Journal, 16(20): 7373–7380, 2016.  
H. Zhang, Q. Liu, X. Chen, D. Zhang, and J. Leng. A digital twin-based approach for designing and multi-
objective optimization of hollow glass production line. IEEE Access, 5:26901–26911, 2017.  
K. Zhou, T. Liu, and L. Zhou. Industry 4.0: Towards future industrial opportunities and challenges. In Fuzzy 
Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on, 2147–2152. IEEE, 
2015.  



96 

 

  



97 

 

 

Epsilon-BMC: a Bayesian model combination 
approach to Epsilon-greedy exploration in model-
free reinforcement learning  
Michael Gimelfarb 

Introduction 
 
Balancing exploration with exploitation is a well-known and important problem in 
reinforcement learning [Sutton and Barto, 2018]. If the behaviour policy focuses too 
much on exploration rather than exploitation, then this could hurt the performance in an 
on-line setting. Furthermore, on-policy algorithms such as SARSA or TD(λ) might not 
converge to a good policy. On the other hand, if the exploration policy focuses too much 
on exploitation rather than exploration, then the state space could not be explored 
sufficiently and an optimal policy would not be found. 
 
Historically, numerous strategies have been proposed for addressing the exploration-
exploitation trade-off specifically in model-free reinforcement learning, including 
Boltzmann exploration and epsilon-greedy [McFarlane,2018]. Epsilon greedy is formally 
defined as the following distribution over actions 
 

 
 

The balance between exploration and exploitation is often controlled by one or more 
tuning parameters, such as ε in epsilon-greedy or the temperature in Boltzmann 
exploration. However, these parameters have to be tuned manually for each task in order 
to obtain good performance. This motivates the design of exploration algorithms that 
adapt according to some measure of the learning progress. For example, Tokic [2010] and 
dos Santos Mignon and da Rocha [2017] followed the simple epsilon-greedy policy, but 
the ε parameter was automatically tuned based on the Bellman error or similar 
quantification of learning progress. Tokic and Palm [2011] later built on this idea by 
combining it with Boltzmann exploration. Count-based methods were also introduced 
that used the state visit counts to guide exploration [Thrun, 1992, Bellemare et al., 2016, 
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Ostrovski et al., 2017].  Dearden et al. [1998] followed a different approach to exploration 
by sampling from a posterior distribution over Q-values.  However, despite recent 
developments in exploration strategies, epsilon-greedy is still often the exploration 
approach of choice [Vermorel and Mohri, 2005, Heidrich-Meisner, 2009, Mnih et al., 
2015, Van Hasselt et al., 2016].  A benefit of epsilon-greedy exploration is that it can be 
easily combined with more sophisticated strategies, such as options [Bacon et al., 2017]. 
 
Unfortunately, the performance of epsilon-greedy in practice is highly sensitive to the 
choice of ε, and existing methods for adapting ε from data are ad-hoc and offer little 
theoretical justification. In this paper, we take a fully Bayesian perspective on adapting ε 
based on return data. Recent work has demonstrated the strong potential of a Bayesian 
approach for parameter tuning in model-free reinforcement learning [Downey and 
Sanner, 2010]. Another key advantage of a fully Bayesian approach over heuristics is the 
ability to specify priors on parameters, such as the predictive inverse variance of returns 
τ in this work, that are more robust to noise or temporary digressions in the learning 
process.  In addition, our approach can be combined with other exploration policies such 
as Boltzmann exploration [Tokic and Palm, 2011].  
 
A Bayesian interpretation of expected SARSA 
 
The paper proceeds in the framework of Markov decision processes. In the paper, we first 
show that, for state 𝑠′ = 𝑠𝑡+1, action 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑡(𝑠′, 𝑎) and reward 𝑟′ = 𝑟𝑡+1, the 
expected return under the expected SARSA algorithm [Sutton and Barto, 2018] is 
 

𝐺𝑡 = (1 − 𝜀𝑡)𝐺𝑡
𝑄 + 𝜀𝑡𝐺𝑡

𝑈  (1) 

 

where 𝐺𝑡
𝑄

 is the standard Q-learning bootstrap, and  
 

 
 
This leads to the following important observation. We can now view expected SARSA as 
a probability-weighted average of two models: the greedy model which trusts the current 
Q-value estimates and acts optimally with respect to them, and the uniform model which 
completely distrusts the current Q-value estimates and consequently places a uniform 
belief over them. Now, the problem of adapting 𝜀 from data in the expected SARSA 
framework can be addressed using Bayesian ensemble learning. Under this 
interpretation, 𝜀 and 1 − 𝜀 are the posterior beliefs assigned to the two aforementioned 
models, respectively. 
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Bayesian Q-learning 
 
In order to facilitate tractable learning and inference, we assume that the return 
observation 𝑞𝑠,𝑎 at time t, given the model, is independently normally distributed: 

 

 
 

In order to update 𝜏, we considered a Normal-Gamma prior 
 

 
 
where 𝑞𝑠,𝑎 are i.i.d. given 𝜏. Given data 𝒟 of previously observed returns, the joint of 𝜏 and 

𝜇 is also Normal-Gamma, and the marginal posterior of 𝜏 is  
 

 
 
where �̂� and  �̂� are the sample mean and standard deviation of the return data [Bishop, 
2006]. These quantities can be updated online after each new observation, in constant 
time [Welford, 1962] 
 

 
 
Finally, by marginalizing out the (posterior) uncertainty in 𝜏, we were able to show that 
the returns, given the model, are student T distributed 
 

 
 

We now show how to use this likelihood function to adapt epsilon given the expected 
SARSA decomposition (1).  
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Epsilon-BMC: an adaptive epsilon greedy algorithm 
 

The expected posterior return can be written as an average over all possible combinations 
of greedy and uniform model 
 

 
 

where 𝑤 is the weight assigned to the uniform model (and so 1 − 𝑤 is the weight assigned 
to the greedy model). By performing this integral exactly, and simplifying the algebra, we 
showed that this expectation was equivalent to  
 

. 
 
So we have shown that 𝜀𝑡 = 𝐸[𝑤|𝒟], e.g. the data-dependent epsilon parameter should be 
set to the expectation under the posterior of 𝑤.  
 

Unfortunately, the posterior distribution of 𝑤 is intractable. However, a good conjugate 
prior argued in the paper is the Beta distribution. To find the optimal values of the Beta 
distribution (𝛼, 𝛽), we apply the Dirichlet moment-matching technique, first presented in 
[Hsu and Poupart, 2016], and further elaborated in [Gimelfarb et. al., 2018] to handle the 
multiple experts case. Applying the approach in this paper, in which the first two 
moments are matched, we obtain an analytic expression for the Beta parameters 
 

 
 

Under this approximation, the optimal epsilon parameter value in a data-driven sense is 
just the expected value of a Beta distribution, which is 
 

 
 

The complete algorithm is given in the following pseudocode as Algorithm 1. 
 
Finally, we were able to prove the following theorem for our algorithm, which is still valid 
even with function approximation for the Q-value function (e.g. deep reinforcement 
learning).  
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Theorem 1: Suppose 0 < 𝛼0 ≤ 𝛽0 < ∞. Then 𝜀𝑡+1

𝐵𝑀𝐶 ≤ 𝜀𝑡
𝐵𝑀𝐶  for all 𝑡 = 1,2, … By the 

monotone convergence theorem [Rudin, 1976, page 56], 𝜀𝑡
𝐵𝑀𝐶  converges as 𝑡 → ∞. 

 
The short and simple proof is provided in the paper. 

 
 
Experiments 
 
We applied this algorithm two three different problems: (1) a discrete grid-world 
environment with sub-goals [Ng et. al., 1999] the classical control problem called inverted 
pendulum/cart-pole, and a noisy supply chain/inventory management problem [Kemmer 
et al., 2018]. We applied this approach with two different reinforcement learning 
algorithms: (1) the tabular/exact expected SARSA algorithm (as presented in the 
pseudocode), and using the off-policy deep reinforcement learning algorithm with 
experience replay (DQN) [Mnih et. al., 2015]. In order to compare how well our algorithm 
adapts the epsilon parameter, we set the following families of epsilon adaptation schemes 
as base-lines 
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The remaining details are provided in the paper. The results are presented below for the 
supply chain problem. We have omitted the other experiments, but they will be published 
along with our paper later this year. 
 

 
 

Overall, we see that epsilon-BMC consistently outperformed all other types of annealing 
strategies, including VDBE, or performed similarly. However, epsilon-BMC converged 
slightly later than VDBE on the grid-world domain and the fixed annealing 
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 on the supply chain problem, using tabular expected SARSA. However, 
in the former case, epsilon-BMC outperformed all fixed tuning strategies, and in the latter 
case, it outperformed VDBE by a large margin. These observations are related to the speed 
of convergence; asymptotically, epsilon-BMC approached the performance of the best 
policy that was attained (for grid-world this is indeed the optimal policy). While it 
performed well on the simple grid-world domain, VDBE performed considerably worse 
than epsilon-BMC on the more complex supply-chain problem. We believe that the 
Bayesian approach of epsilon-BMC smooths out the noise in the return signals better than 
VDBE and other ad-hoc approaches for adapting epsilon. This also suggests why our 
algorithm performed better with value function approximation than other methods. 
 
Furthermore, we see that no single family of annealing strategies worked consistently well 
across all domains and algorithms. For instance, geometric decay strategies worked well 
on the grid-world domain, while performing poorly on the supply-chain problem using 
tabular SARSA. The inverse decay strategies worked well on the supply-chain problem 
using tabular SARSA, but failing to match the performance of other strategies when 
switching to DQN. Also, the performance of VDBE was highly sensitive to the choice of 
the sigma parameter. A lower value of sigma worked well for grid-world and cart-pole, 
but higher values of sigma worked better for supply-chain. The performance of epsilon-
BMC was relatively insensitive to the choice of prior parameters for mu and tau, so we 
were able to use the same values in all our experiments. However, unsurprisingly, it was 
more sensitive to the strength of the prior on 𝜀 (𝛼0, 𝛽0). Since we can always set them to 
be equal, this effectively reduces to the problem of selecting a single parameter that 
controls the strength of the prior on epsilon. This is considerably easier to do than to select 
both a good annealing strategy and the parameter(s) that control the speed of 
convergence. 
 
Conclusion 
 
In this paper, we proposed a novel Bayesian approach to solve the exploration-
exploitation problem in general model-free reinforcement learning, in the form of an 
adaptive epsilon-greedy policy. Our novel algorithm, epsilon-BMC, is a novel approach 
for tuning the epsilon parameter automatically from return observations based on 
Bayesian model combination and approximate moment-matching based inference. It was 
argued to be general, efficient, robust, and theoretically grounded, and was shown 
empirically to outperform fixed annealing schedules for epsilon and even a state-of-the-
art heuristic adaptation scheme proposed in the literature. 
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Ongoing research on the remaining useful life 
prediction for high voltage circuit breakers 

Gaoyang Li 

Introduction 
 
Acting as the vital device to cut off the short-circuit currents and isolate the faulty parts, 
the high voltage circuit breaker plays an important role in the relaying protection system 
of the power grid against various faults. Nowadays, the long-lived mechanical 
maintenance policies adopting a scheduled maintenance scheme are clearly sub-optimal 
compared to the methodologies based on prognostics and health management (PHM), 
which relies on an estimation of the health status to trigger the maintenances to avoid 
needless interventions. In the PHM, it is a key step to quantify the remaining useful life 
(RUL) of the mechanical systems based on the condition monitoring data. 
 
Reviewing the literature devoted to the RUL estimation, the existing prognostics research 
can generally be classified into three categories: 1) model-based, 2) data-driven, and 3) 
hybrid-based. The model-based approaches are dependent on the physical models of 
specified mathematical expressions to describe the degradation of the system, of which 
the Wiener process, Gamma process, and inverse Gaussian process model are popular 
choices. With the analytic methods or approximate solutions such as Particle filter and 
Kalman filter, it is possible to update the parameters’ posterior distributions online with 
sequential Bayesian methods. The data-driven models, on the contrary, mostly explore 
the run-to-failure data from field or laboratory experimentation with some machine 
learning models. Successful applications can be found in literature with Neural Network, 
Support Vector Machine (SVM). Finally, the hybrid approaches attempt to combine 
model-based and data-driven techniques to maximizing the existing information 
considering the dilemma between the availability of data and the reliability of prior 
knowledge. Although the model-based methods can be quite accurate with a detailed 
knowledge of the failure mechanism, the data-driven approaches have gained a wide 
diffusion for the complex engineered systems where the analytical model is laborious or 
even impossible. In particular, the deep learning methods have attracted tremendous 
attention recently as an active sub-field for the data-driven estimation area owing to the 
highly complex non-linear structure. There are, but not limited to, several types of deep 
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structures including Recurrent Neural Network(RNN), Restricted Boltzmann 
machine(RBM), convolutional neural networks(CNN) that have been successfully applied 
in the PHM domain and outperformed the traditional prognosis algorithms. 
 
However, one major divergence among these methods is that, while it is quite natural to 
estimate the uncertainty and variability of the statistical-based or model-based methods, 
most of the deep neural network based approaches can only achieve point estimation of 
RUL and are assumed to be accurate. In fact, In order to provide a meaningful RUL-based 
decision-making auxiliary, it is important to analyze not only the deterministic but also 
the prediction interval due to the presence of unknown factors, indicating to what degree 
can we trust the results. Besides, another drawbacks of the application of deep learning 
in the RUL estimation, which is often ignored, is the challenges in utilizing censored data 
in the model training.  
 
Bayesian neural networks (BNNs) recently emerged as a principled framework to 
estimate either the aleatoric uncertainty or epistemic uncertainty. The BNN replaces the 
deterministic parameters with some distributions and optimizes the posterior 
approximation of the model parameters. Therefore, the present paper focuses attention 
on reasoning about both the epistemic uncertainty and the heteroscedastic aleatoric 
uncertainty in the BNN-based RUL estimation methods. The run-to-failure data from the 
operating mechanism of high voltage circuit breakers are collected to validate the 
effectiveness of the proposed method.  
 
Model description 
 
The two kinds of uncertainties, epistemic uncertainty and aleatoric uncertainty, can be 
considered as either putting a prior distribution on the model parameters or on the 
outputs. Therefore, it quite straight to distinguish what kinds of uncertainties are 
included in the prognosis model based on the basic setups. Accordingly, this section 
presents an overview of how the model-based and data-driven methods treat the 
uncertainty differently, and what kinds of uncertainties have been considered in the 
existing models. 
 
Uncertainty in the model-based and hybrid-based methods 
 
In model-based methods, the physical mechanism of equipment degradation is often 
described in the form of some stochastic processes, such as the Wiener process, Gamma 
process, or inverse Gaussian process. These models usually assumed a process with 
certain independent increment distribution, and the RUL is defined based on the distance 
between the cumulative increments and a preset threshold. Therefore, only the aleatoric 
uncertainty is considered in such models indicated by the increment distributions. The 
recent progress of model-based methods also tried to incorporate the epistemic 
uncertainty as well by putting a prior distribution on the drift parameters, offering a more 
comprehensive uncertainty estimation. For example, Zhai utilizes another Brownian 
motion for the drift parameter. The similar idea is also shared by Si. Taking advantage of 
the relatively simplified structure, the noise degrees of both the drift parameter and 
output can be estimated by the Maximum Likelihood Estimation (MLE) method. 
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However, the assumption that the degradation follows some preset path restricts their 
applications. Therefore, the hybrid approaches attempt to combine the data-driven 
techniques with the model-based methods by either replace the degradation model or 
measurement model, or both, with data-driven methods. In this kind of sequential 
Bayesian framework, the noise parameters in the degradation model and the 
measurement model can be considered as epistemic uncertainty and aleatoric 
uncertainty, respectively. However, although the noise levels have a big influence on the 
updating results, they are usually considered as hyperparameters. Only a few work 
attempts to deal with the practical challenge of noise level estimation. 
 
Deep learning in RUL 
 
Recently, deep learning has emerged as a potential alternative to process the highly non-
linear and varying sequential sensor data in RUL estimation. For instance, Liao proposed 
an enhanced RBM to automatically generate features in RUL prediction. Li extracted 
multi-scale features of bearing vibrations using CNN. Besides, Zhao proposed local 
feature-based GRU networks to realize automatic feature learning for machine health 
monitoring. Ellefse applied a semi-supervised LSTM in turbofan engine degradation 
analysis. However, uncertainty is not the primary concern in the mentioned methods 
above, which reflect the essential divergence between the generating models and 
discriminant models. 
 
To fill this gap, some literature has tried to integrate some external remedies into deep 
learning based methods for uncertainty quantification. An ensemble method is presented 
to estimate the aleatoric uncertainty, while the epistemic uncertainty is gained from a 
separated dataset. However, the ensemble learning is quite computationally-expensive 
and the separation operation is a waste of data.  
 
Bayesian neural network 
 
Different from the external approaches such as resemble learning, the BNN is a fully 
Bayesian method by replacing the deterministic weights with distributions. BNN is easy 
to formulate but difficult to conduct inference. Early studies relay on some approximation 
approaches such as Laplace approximation, Monte Carlo Markov Chain (MCMC), and 
variational inference. In the deep learning era, Blundell introduced Bayes by Backprop to 
realize variational inference in DNN, based on which a lot of new inference techniques 
have been proposed.   
 
Today, deep learning algorithms are able to extract high-level representations 
automatically and have had tremendous success in research fields such as biology, 
physics, and prognosis. Many of the applications achieved state-of-the-art performance, 
with most of them not able to output the confidence interval. However, in reliability 
analysis, the uncertainty of the prognosis is quite critical in resource management and 
maintenance planning. A meaningful RUL prediction with uncertainty will provide not 
only the expectation of the mean RUL but also the probability that the machine will fail 
immediately, which is quite important for certain research objects of high reliability 
requirements such as electrical system and medical research. 
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From the perspective of Bayesian theory, the uncertainty of the prediction model derives 
from the prior probability and the likelihood function from the statistical model for the 
observation data.  
 

 
   

 
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where   indicate the model parameters and D  are the observed data. 
 
The key idea to generate uncertainty is to specify the prior parameter of the model 
parameters, indicating our belief about the hypothesis space. Most of the prognostic 
models that are able to quantitate the model uncertainty are based on this basic theory. 
In addition to offering uncertainty, another advantage of Bayesian inferences is the 
robustness to overfitting owing to the prior knowledge. 
 

If a deep leaning model  f X parameterized by the collection of model parameters   is 

utilized in this framework, a prior distribution must be assigned on  . For example, if a 
Gaussian prior is assumed arbitrarily, 
 

𝜔~𝑁(0,1) 
 

with the observations as  1 2, ,..., nX x x x   and their corresponding labels as 

 1 2, ,..., nY y y y , the posterior distribution of over the model parameters  can be 

inferred from Eq. 
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Given a new observation *x , the new prediction distribution is obtained by marginalizing 
the posterior distribution of   
 

      * * * *| | | ,p y x p y f x p X Y d


    
 

According to the law of total variance, if X   and Y  are random variables, the variance of 
the prediction Y  can be decomposed as unexplained and explained components  
 

     | |Var Y E Var Y X Var E Y X         
 
The first term reflects the ignorance of the model parameters, referred to as the model 
uncertainty, is also known as the Epistemic uncertainty. The second term, aleatoric 
uncertainty, comes from the noise in the likelihood function, which is expected to be 
explained away with more data.  
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Neural network structure 
 
Different neural networks can be adjusted to fit for such a framework. In practice, we use 
RNN to transform the input x of multiple time steps, with its output split to predict the 
parameters of the parametric survival distribution. In principle, RNN is more suitable for 
capturing relations in sequential data and have been applied extensively in as speech 
recognition, natural language translation, and video recognition. The so-called plain RNN 

has a hidden state ih  that is recurrently updated by 

 

 1i i ih Wx Uh b   
 

 

where the hidden state -1ih  is a d-dimensional vector, and b  is the bias. W  and U are the 

weights. Tanh is the activation function. However, one particular drawback of RNN is the 
difficulty to capture long-term dependencies due to the vanishing or exploding gradients. 
To alleviate the problem, multiple variants have been proposed, of which the LSTM and 
GRU are successful ones. Although both are based on gating mechanisms, the GRU is 
claimed to be computationally cheaper compared to LSTM while maintaining similar 
performance. The reason lies mainly in that the GRU reduces the three gates from the 

LSTM to two, retaining an update gate iz   and a reset ir   only, thus having fewer 

parameters and calling for fewer data to generalize. Generally speaking, the GRU is 
presented in the following form: 
 

ℎ𝑖 = (1 − 𝑧𝑖) ∙ ℎ𝑖−1 + 𝑧𝑖 ∙ ℎ�̃� 

ℎ�̃� = 𝑔(𝑊ℎ𝑥𝑖 + 𝑈ℎ(𝑟𝑖 ∙ ℎ𝑖−1) + 𝑏ℎ) 
 

with the update gate and reset gate presented as  
 

 1i z i z i zz W x U h b   
 

 1i r i r i rr W x U h b   
 

 

where  zW  zW  rW  rU  are the model weights, and zb  rb are the bias. In this formulation, 

the reset gate allows the hidden state ht to drop any information that is irrelevant to the 
future task, and the update gate controls the how much the previous hidden state is 
integrated with current observation in forming the current hidden state. Intuitively, the 
reset gate is more relevant to capturing short-term dependencies, while the update gate 
is more active when longer-term dependencies show more significance. By realizing 
forgetting and selectively memorizing in one step, as indicated in (), GRU saves one gating 
signal and the associated parameters.  
 
In this paper, the GRU is utilized for fusing the information of multiple steps when the 
continuous monitoring data are available. Specifically, the GRU is further transformed 
into a Bayesian GRU by integrating the dropout variational inference technique into the 
original GRU model. 
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Figure 21 Architectures of a general RNN and GRU 

 
Summary 
 
We presented a novel Bayesian deep learning based framework to reason about the 
uncertainty in the RUL prediction. First, a dropout BNN is applied by assigning the prior 
distributions on every weight parameters of a GRU Neural Network to capture our 
ignorance about the model parameters, which is also known as the epistemic uncertainty.  
 
The approach was assessed with the end-to-life data belonging to several hydraulic spring 
operating mechanisms in high voltage circuit breakers. The direct prediction results 
clearly show the superiority of the proposed methods, especially the Weibull BNN, over 
the traditional GRU with RMSE loss and several traditional probabilistic machine 
learning models with a higher point estimation accuracy and a better balance between the 
confidence interval width and PCIP. In the future, the ambition is to measure the 
uncertainty more comprehensively by incorporating the model structure uncertainty into 
the Bayesian framework as well. 
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Toronto Hydro Corporation: investment spike 
smoothing and asset risk growths 

Gary Wang 

Overview 
 
In the C-MORE consulting project with Toronto Hydro, the objective is to address 
investment spike issues when a large proportion of assets come due for replacement 
simultaneously. Differences in asset risk growths are also major concerns when 
developing replacement schedules. 
 
As an extension to our last report, this report will present the problem and objectives, and 
present a brief literature review. Three mathematical solutions to this problem will be 
presented in this report. Each of the three mathematical solutions have their unique 
characteristics, and are designed to solve the investment spike problems based on 
different investment targets, asset demographics and number of data entries. The results 
and recommendations on how to approach such problem are also included in this report. 
 
Introduction: background, problem, and objectives  
 
Toronto Hydro has a large variety of physical assets in the distribution system; each type 
of asset has a large and dynamic population. The company has a replacement program(s) 
for each category of assets. All assets are subject to replacements, reactively and/or 
proactively, due to failures, failure risks, aging, upgrades, legal obligations, etc. Assets of 
the same type often have similar useful-lives. Historically, large projects/initiatives have 
installed assets within a short period of time (or in a cyclical nature of a period of years), 
which can contribute to spikes in renewal expenditures in the future. Due to capital 
budget constraints, not all assets can be replaced at or before the optimal/expected 
replacement time, which further contributes to the spikes in renewal expenditures. To 
smooth out the investment spikes, assets have to be replaced earlier or later than the 
current expected replacement time. If asset is replaced early, asset may not have been 
fully depreciated, values within the asset has not been used to its fullest; if asset is 
replaced later than expected time, the asset carries additional risk, which may cause 
catastrophic failures in the distribution system, imposing additional costs to the 
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company. Asset risk growths are also a major concern of this project. If two assets have 
different risk growths, even if the asset with the greater risk growth has a lower risk cost 
in the current period, it may be ideal to replace the asset with greater risk growth first for 
long-term outlooks. 
 
This project will focus on creating an optimization approach to smooth out investment 
spikes with reasonable economic efficiency. The model should allow analysts and 
planners to setup constraints that are unique to a specific project/program. The types of 
constraints should include, but not limited to: capital budgeting constraints, replacement 
quantity constraints, and investment period constraints. For more details on the 
proposed constraints, please review section 6. 
 
In this problem, we will ignore the effect of interest rates (which can be easily 
implemented in the mathematical approaches presented in later sections) to eliminate 
noises from other factors, and focus on investment spike smoothing and asset risk 
growths. 
 
Hypothesis 
 
Toronto Hydro’s investment smoothing problem can be solved as an optimization 
problem with a set of constraints on the difference in budgeting within the investment 
horizon. Other constraints, such as, replacement amounts and risk levels can also be 
imposed in the optimization model, if needed. Asset risk growth plays a major role in 
long-term investment planning. 
 
Literature review 
 
Maintenance resource planning for utility poles in a power distribution 
network [1] 
 
A recent report from C-MORE, “Maintenance resource planning for utility poles in a 
power distribution network,” discusses prevention of unexpected increase in demand and 
resources, optimizing through the use of delayed renewal process [1]. The paper provides 
insights into preventative planning and risk management in the utility industry. 
Preventative planning takes on a similar concept as proactive replacement planning 
where certain proactive and pre-cautionary actions are performed to minimize the 
risk/cost of outages. The idea of risk management also coincides with the given research 
objective. The company does proactive replacement planning on a risk basis, prioritizing 
risky assets over assets that are unlikely to fail in a given period of time. 
 
Equipment-replacement problem [2] 
 
An article published by the University of Texas at Dallas (UTDallas) investigates an 
equipment replacement problem. The article breaks dynamic programming into four 
general stages [2]: 
 

1) Definition of appropriate stages and states. 
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2) Definition of the optimal-value function. 
3) Construction of a recurrence relation. 
4) Recursive Computation. 

 
For step 1, it is important to properly define stage variables and state variables. A stage 
variable should indicate the timeframe/timestamp of an equipment replacement 
problem. A state variable provides a snapshot of asset conditions at each timestamp [2]. 
In Toronto Hydro’s investment problem, the stage variables are the years we plan for asset 
replacement; the state variables are the asset demographics of a given year defined as 
stage variables. In step 2, an appropriate optimization function must be defined [2]. In 
the Toronto Hydro investment spike smoothing problem defined earlier, the goal is to 
minimize risk cost through active replacements while constraining budget expenditures 
for each year. In step 3 and 4, a recursive function will be created to compute the 
optimized replacement schedule from the farthest replacement year included in the stage 
variables to the closest year (to now) [2]. 
 
Theoretical concerns 
 
As a regulated utility company, Toronto Hydro faces many regulations and budgeting 
constraints. The model should allow analysts and planners to setup constraints that is 
unique to a specific project/program. The types of constraints should include, but not 
limited to: capital budgeting constraints, replacement quantity constraints, and 
investment period constraints. 
 
The capital budgeting constraints set limits on annual capital expenditures. This 
constraint may vary from year to year. All values will be provided in present value. 
 
The replacement quantity constraints set limits annual replacement quantities. This 
constraint may vary from year to year. The units of quantity may vary, for example, under-
ground cables are measured in meters while transformers are counted per individual unit. 
 
The investment period constraints set time limits to the replacement program. These 
constraints are a set of time variables; these variables indicate the desired time frame to 
achieve the set objectives. 
 
Given Asset A and B in year i, A has a lower risk cost than B in year i, but if A has a higher 
risk cost growth, then in some year j, where j > i, the risk cost of A may potentially out-
grow B’s risk cost. Thus, it may be more efficient to replace A before B for better long-
term outlooks, as A has a larger risk cost growth. The risk cost growth problem must be 
taken into consideration when formulating the mathematical optimization. 
 
If an asset is replaced too early, the given asset may not be fully depreciated, the early 
replacement causes the company to lose value on the replaced asset; if an asset is replaced 
later, the given asset bear an increasing amount of outage risk due to age-related factors. 
If an outage occurs, the consequence cost of the outage may be significantly higher than 
the replacement cost or the asset value. The replacement timing trade-offs will need to be 
closely examined when developing investment smoothing algorithms. 
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Methods: proposed approaches 
 
For the investment spike smoothing problem, “risk costs” carried by physical assets will 
be used to provide snapshots of asset demographics/asset health at each stage (current 
methodology used at Toronto Hydro). Toronto Hydro performs most maintenance 
activities on a fixed cycle, asset replacements will not affect routine maintenance 
activities. Therefore, maintenance costs will not be factored into this model. Toronto 
Hydro will provide a consequence cost for each individual asset based on its setup (e.g. 
carried load, location, outage duration, etc.). A mathematical program will be created to 
meet the given expenditure constraints while minimizing the risk costs. The model should 
provide an optimized investment schedule within the given constraints. 
 
Non-linear programming approach and mathematical formulation 
 
In this approach, the mathematical formulation will minimize the sum of annual risk cost 
over the investment planning period while setting constraints on annual investment 
budgets to smooth out the planned investment expenditures. This formulation considers 
the impact of risk cost growths within the investment period. Due to the non-linearity 
nature of this mathematical formulation and having two sets of decision variables, the 
program may have a long run-time when dataset becomes very large. 
 
Variables and definitions 
 
Aij  Age, age of asset i in year j. 
Bj  Annual Budget, the forecasted expenditure based on suggested 

replacement schedule in year j. 
Bmaxj  Maximum Annual Budget, the maximum forecasted expenditure in year j. 
Bminj  Minimum Annual Budget, the minimum forecasted expenditure in year j. 
Ci  Consequence Cost, the cost to Toronto Hydro and customers if asset I fails 

or malfunctions. 
Favgj  Flexibility (Average), the allowed expenditure differences between the 

average annual expenditure and the annual budget in year j. 
Fconsj  Flexibility (Consecutive Years), the allowed expenditure differences 

between annual budgets of year j and year j + 1.  
HZij  Hazard Rates, the chance of failure of asset i in year j. Derived based on 

Weibull distributions. 
RepAmountj Replacement Amount, the number of units replaced for a specific type of 

assets (major types, e.g. underground transformers) in year j. 
RepCosti Replacement Cost, the cost to replace asset i. 
RiskCostij Risk Cost, is equivalent to Consequence Cost of asset i multiplied by the 

chance of failure (Hazard Rate) in year j. 
Si Scale, a parameter used in the Weibull/Hazard Rate Function for asset i. 
SFi Scale Factor, a parameter used in the Weibull/Hazard Rate Function for 

asset i. This parameter is used after assigning Shape to 3 
Shape Shape, a parameter used in the Weibull/Hazard Rate Function. 
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Xij Decision Variable, Xij takes on 0 or 1.  If Xij  = 1, asset i will be replaced in 
year j. If Xij = 0, asset i will remain in the system in year j. 

 
Mathematical formulations and constraints 
 

 
subject to 

 
 
Most asset types have a Shape factor of 3, if all asset have a shape of 3, then HZij can be 
simplified to: 
 

 
 

The optimization must satisfy at least one of the following: 
 

 
 

The objective of this formulation is to minimize the overall system risk cost over the 
planning horizon. The budget constraints are imposed to smooth out the planned 
expenditures spikes. 
 
This mathematical program contains two sets of decision variables, Aij and Xij. Although 
Aij is a set of dependent variables of Xij, in many mathematical optimization tools/solvers 
(in this problem, we use IBM CPLEX), any dynamic variable, or any variable that changes 
based on constraints is treated as a decision variable. Henceforth, the age variables Aij act 
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as a set of decision variables in the mathematical formulation. Xij is a set of integer 
decision variables that determines whether or not to replace asset i in year j. 
 
The first constraint is an age constraint. Because one is dealing with physical assets in this 
problem, aging is a significant contributor to assets’ failure risks. If Xij takes on the value 
of 0, meaning not to replace asset i in year j, then the constraint will set Ai,j+1 to Ai,j + 1; if 
Xij takes on the value of 1, meaning to replace asset i in year j, then the constraint will 
reset age Ai,j+1 to 0, reflecting that a new asset i has been put in to replace the old asset i 
in year j. 
 
HZij is the hazard rate of asset i in year j, given the age Aij. This hazard rate provides the 
probability of asset i failing between the age of Aij and the age of Ai,j+1, given that asset i 
has survived past age Aij. The hazard rate function can be decomposed into two 
components, the probability density function f(t) and the survival function R(t), where 
HZij = f(t)=R(t). The probability density function, f(t), uses the Weibull distribution 
function assigned to each asset i based on its asset type. The Weibull distributions are 
often used in reliability engineering to predict the probability of failure of a given asset 
within a given time period. The survival function, R(t), provides the probability of an asset 
surviving past a certain age, in this case, surviving past Aij. 
 
Σi Xij = RepAmountj is an optional constraint. This constraint gives engineers and analysts 
the option to limit the number of assets that are being replaced in year j. 
 
Bj is the total budget proposed by the algorithm for year j. The main purpose of this 
research is to minimize the budgeting spikes within the investment period. This is done 
by imposing constraints on the annual budgets. The budget has to follow at least one of 
the budget constraint, but not limited to just one. 
 
The first budget constraint has an upper and lower budget bound. 
 
The second budget constraint provides a little more flexibility. It takes all proposed 
budgets over the planning horizon and finds the average budget. The proposed budget 
must fall within a determined range from the average budget. 
 
The third budget constraint limits the budget change from year to year to a fixed value in 
each year. 
 
Step-wise mathematical programming approach and mathematical 
formulation 
 
In this approach, a step-wise mathematical formulation with a look-ahead period (k years 
in a look-ahead period) is introduced. At each investment year, the program will 
accumulate risk cost from current investment year to current investment year plus k 
years. In each investment year, the program will minimize the accumulated risk cost over 
the look-ahead period through asset replacement while staying within the budget 
constraints. A replacement schedule for the current year will be generated and the next 
year’s asset demographics will be updated accordingly. This approach considers risk 
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growth from the beginning for the investment year to the end of investment year plus the 
number of years in the look-ahead period. This approach has a looser constraint on risk 
growth than the previous approach. But due to its step-wise nature, breaking the problem 
into smaller sub-problems, this program has a short run-time compared to the previous 
approach. 
 
Variables and definitions 
  
CumulativeRiskCostij CumulativeRiskCost, the sum of risk cost for asset i from year 

j to year (j + k) [k years in look-ahead Period].   
Aij Age, age of asset i in year j.   
Bj Annual Budget, the forecasted expenditure based on suggested replacement 

schedule in year j.   
Bmaxj Maximum Annual Budget, the maximum forecasted expenditure in year j.  
Bminj Minimum Annual Budget, the minimum forecasted expenditure in year j.   
Ci Consequence Cost, the cost to Toronto Hydro and customers if asset i fails or 

malfunctions.   
Favgj Flexibility (Average), the allowed expenditure differences between the average 

annual expenditure and the annual budget in year j.   
Fconsj Flexibility (Consecutive Years), the allowed expenditure differences between 

annual budgets of year j and year j + 1.   
HZij Hazard Rates, the chance of failure of asset i in year j. Derived based on Weibull 

distributions.  
RepAmountj Replacement Amount, the number of units replaced for a specific type of 

assets (major types, e.g. underground transformers) in year j.   
RepCosti Replacement Cost, the cost to replace asset i.   
RiskCostij Risk Cost, is equivalent to Consequence Cost of asset i multiplied by the chance 

of failure (Hazard Rate) in year j.   
Si Scale, a parameter used in the Weibull/Hazard Rate Function for asset i.   
SFi Scale Factor, a parameter used in the Weibull/Hazard Rate Function for asset 

i. This parameter is used after assigning Shape to 3. For more details, please 
see section 7.3.2.   

Shape Shape, a parameter used in the Weibull/Hazard Rate Function.   
Xij Decision Variable, Xij takes on 0 or 1. If Xij = 1, asset i will be replaced in year 

j. If Xij = 0, asset i will remain in the system in year j.  
 
Mathematical formulations and constraints 
 
Starting from the first year within the investment period, calculate the 
CumulativeRiskCost based on asset age and the look-ahead parameter, then determine 
an annual replacement schedule through integer programming optimization. After 
completing the optimization, update next year’s asset demographics accordingly. Repeat 
for all years within the investment period. 
 

 
subject to 
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Most asset types have a Shape factor of 3, if all asset have a shape of 3, then HZij 
simplified to: 
 

 
 
The optimization must satisfy at least one of the following: 
 

 
 
The objective of this formulation is to minimize the overall system Risk Cost for year j and 
repeat for all years in the planning horizon. The budget constraints are imposed to smooth 
out the planned expenditures spikes. 
 
This Step-Wise Mathematical Programming Approach introduces a look-ahead 
parameter, k, helps us to determine the CumulativeRiskCost measure, which accumulates 
the risk cost from year j to year j + k. This measure not only considers the risk cost in 
current years, but it also examines the impact of future risk costs (up to age j + k) if this 
asset remains in the distribution system. 
 
Xij is a set of integer decision variables that determines whether or not to replace asset i 
in year j. 
 
The previous Non-Linear Programming Approach contains two sets of decision variables, 
Aij and Xij. Although Aij is a set of dependent variables of Xij, in many mathematical 
optimization tools/solvers (in this problem, we use IBM CPLEX), any dynamic variable, 
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or any variable that changes based on constraints is treated as a decision variable. 
Henceforth, the age variables Aij act as a set of decision variables in the mathematical 
formulation. This dramatically increases the complexity of the non-linear program as it 
requires the machine to solve two sets of decision variables, one of them being a set of 
integer decision variables, the runtime for the program is very long when processing large 
datasets. 
 
The Step-Wise Mathematical Programming Approach removes the age constraint, thus 
re-moving one set of decision variables, Aij. The Aij used in this approach are fixed values 
during the optimization process and are only changed after each optimization cycle. The 
program utilizes the look-ahead variable and the mechanism of CumulativeRiskCost to 
evaluate the current and future impacts of risk cost. The program provides an optimized 
replacement schedule for the current year, then resets/increases the assets’ age based on 
the replacement schedule. Once the ages are reset/increased, the program will move to 
the next year and loop this cycle until it reaches the end of the planning horizon. 
 
Sorting approach and mathematical formulation 
 
This Sorting Approach is built based on the foundation of the Step-Wise Mathematical 
Programming Approach. The Step-Wise Mathematical Programming Approach provides 
an optimal replacement schedule for minimizing the CumulativeRiskCost over the look-
ahead period. It has a decent runtime when processing small and medium size datasets 
(less than 300 data entries). But due to the nature of integer programming, the complexity 
of the program grows significantly when the number of decision variables increases. Thus, 
this approach may take a very long time to process when the dataset is large. Given the 
large physical distribution asset population of Toronto Hydro, it is important that the 
algorithm is able to process large dataset efficiently. The Sorting Approach is introduced 
as a solution to this problem as it has significantly lower runtime compared to the Non-
Linear Programming Approach and the Step-Wise Mathematical Programming 
Approach. The approach is motivated by the need of a faster investment planning 
algorithm for larger datasets. Instead of producing the replacement schedule using 
integer programming optimization, the approach utilizes sorting mechanisms to remove 
assets with the highest CumulativeRiskCost to ReplacementCost Ratios. The ratio 
provides a snapshot of the cost-efficiency for asset replacement given the 
CumulativeRiskCost from year j to year j + k. The ratio shows that, for every dollar spent 
in replacement cost, how much CumulativeRiskCost is removed from the system; the 
higher the ratio, the better the cost-efficiency. 
 
In this approach, a sorting mechanism with a look-ahead period (k years in a look-ahead 
period) will be utilized. In each investment year, the program will accumulate risk cost 
from current investment year to current investment year plus k years. In each investment, 
the program will minimize the accumulated risk-cost over the look-ahead period through 
asset replacement while staying within the budget constraint. A replacement schedule for 
the current year will be generated and the next year’s asset demographics will be updated 
accordingly. This approach considers risk growths from the beginning for the investment 
period to the end of investment period plus the number of years in the look-ahead period. 
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Mathematical formulations and constraints 
 
The algorithm will start from the first year in the investment period; calculate the 
CumulativeRiskCost from year j to year j+k, then sort all assets by their 
CumulativeRiskCost to ReplacementCost Ratio. Determine a replacement schedule by 
removing the assets with the highest ratio while staying within budget constraints. After 
asset replacements, the algorithm updates next year’s asset demographics accordingly 
and repeats for all years within the investment period. 
 
Calculate the CumulativeRiskCost for asset i year j using the following formula: 
 

 
 
Most asset types have a Shape factor of 3; if all asset have a shape of 3, then HZij is 
simplified to: 
 

 
 
Calculate the CumulativeRiskCost to ReplacementCost Ratio of each asset: 
 

 
 
Sort the CumulativeRiskCost to ReplacementCost Ratio from highest to lowest. Replace 
assets with the highest CumulativeRiskCost to ReplacementCost Ratio until the 
replacement amount constraint and the budget constraints are met. After meeting 
constraint requirement, the program will continue to replace asset until no further 
replacements can be executed without violating the constraints. Please note that the list 
of asset is sorted by CumulativeRiskCost to Replacement Ratio without regards to the size 
of the replacement cost. Given the budget constraint, if an asset in the sorted list, say asset 
m, cannot not be replaced without violating the budget constraint, the algorithm will skip 
asset m and move to the next asset in the sorted list. 
 
Please note that the replacement amount constraint may conflict with the budget 
constraints and make the solution less optimal under the Sorting Approach. If the analyst 
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chooses to impose such constraint, it is recommended to have a very loose replacement 
amount constraint to minimize the impact of the conflict. 
 
After determining the replacement schedule for the current year, the algorithm will 
reset/increase the age parameters according to the replacement schedule. The algorithm, 
then, will loop back to generating a new set of CumulativeRiskCost with year j + 1 as the 
current year, and repeat process until it reaches the end of the investment horizon. 
 
The replacement amount constraint and the budget constraints are imposed as follows: 
 

 
 
The optimization must satisfy at least one of the following: 
 

 
 

Because this approach utilizes sorting mechanisms, the formulation does not have an 
optimization objective, instead, the formulation lists the steps within the algorithm. 
 
The goal of this formulation is to reduce the overall system CumulativeRiskCost from year 
j to year j + k and repeat for all years in the planning horizon. The budget constraints are 
imposed to smooth out the planned expenditures spikes. 
 
Similar to the Step-Wise Mathematical Programming Approach, the Sorting Approach 
uses a look-ahead variable, k, helps us to determine the CumulativeRiskCost measure, 
which accumulates the risk cost from year j to year j + k. This measure not only considers 
the risk cost in current years, but it also examines the impact of future risk costs (up to 
age j + k) if this asset remains in the distribution system. 
 
The decision variables Xij in this approach serves as a set of indicators to whether the 
replacement schedule has violated the constraints or not. Aij will serve as parameters and 
will reset/increase according to the generated replacement schedule at the end of each 
year’s replacement cycle. 
 
As noted earlier, the previous Non-Linear Programming Approach contains two sets of 
decision variables, Aij and Xij. Although Aij is a set of dependent variables of Xij, in many 
mathematical optimization tools/solvers (in this problem, we use IBM CPLEX), any 
dynamic variable, or any variable that changes based on constraints is treated as a 
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decision variable. Henceforth, the age variables Aij act as a set of decision variables in the 
mathematical formulation. This dramatically increases the complexity of the non-linear 
program as it requires the machine to solve two sets of decision variables, one of them 
being integer decision variables, the runtime for the program is very long when processing 
large datasets. 
 
The Sorting Approach moves away from integer programming optimizations. The 
program utilizes the look-ahead variable and the mechanism of CumulativeRiskCost to 
evaluate the current and future impacts of risk cost. The program provides a replacement 
schedule for the current year based on the CumulativeRiskCost to ReplacementCost ratio, 
then resets/increases the assets’ age based on the replacement schedule. Once the ages 
are reset/increased, the program will move to the next year and loop this cycle until it 
reaches the end of the planning horizon. 
 
Approaches in application, results, and discussions 
 

In this section, we will discuss the problems that these approaches face in implementation 
and in application. The testing results will be presented and the takeaways of each 
approach will be discussed in details. 
 
Non-linear programming approach in application 
 
This approach is more costly in terms of mathematically complexity as it attempts to 
determine the optimal solution, without any loosening in constraints, over the planning 
horizon in one iteration. This formulation requires the server to possess a high level of 
processing power in order to complete the calculation. 
 
For this reason, the implementation is done using IBM ILOG CPLEX, which supports 
high-level Optimization Programming Language (OPL) and allows the user to run the 
optimization on the IBM CPLEX Enterprise Server. IBM CPLEX Enterprise Server is a 
scalable server that provides mathematical optimization environments based on the size 
of the optimization. It is a powerful tool that is available for students for academic-use at 
zero cost. 
 
The first obstacle encountered during implementation was within the age constraint. The 
age in current year (Ai1) is a fixed integer, but age in later years (Aij where j ≥ 2) becomes 
a variable based on the replacement schedule determined by Xij. Though Aij is dependent 
on the decision variables Xij, in Optimization Programming Language (OPL), Aij also 
becomes decision variables. The previously formulated age constraint: 
 

 
 
creates high mathematical complexity and renders the constraint non-convex. This makes 
the mathematical optimization very costly and IBM ILOG CPLEX is unable to handle non-
convex constraints. To overcome this barrier, the age decision variables (Aij) have been 
removed due to its dependency to Xij and only asset age in the current year (AGEY 1[i]) is 
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used in the formulation. All age parameters used in other constraints are derived directly 
using AGEY 1[i] and decision variables Xij. The age parameter can be rewritten as: 
 

 
 
Unfortunately, this alternative formulation only holds true when limiting the replacement 
schedule to replace the same asset no more than once, thus: 
 

 
 
This can be a reasonable assumption / constraint. Due to the long lifespan (average useful 
life) of utility assets, generally between 30 to 45 years, it is reasonable to 
assume/constrain that each asset may only be replaced once during the 5 to 20-year 
planning horizon. 
 
Additionally, the original risk cost constraint: 
 

 
 
is considered as a non-convex constraint. To make this constraint convex, the comparison 
operator is changed from equal “=” to greater than “≥” 
 

 
 
This does not change the optimization results as the optimization objective minimizes 
RiskCostij. 
 
This approach is able to provide a replacement schedule that achieves minimum total risk 
cost, over the planning horizon, given a set of budget constraints. But due to lack of 
relaxation in constraints, single-iteration optimization process, and costly integer 
programming approach, the optimization has an extremely long runtime. It is advised to 
use the Step-Wise Mathematical Programming Approach or the sorting Approach if 
relaxation in constraints is acceptable. 
 
Non-linear programming approach: further formulation adjustments 
 
The approach suggested previously solves the convexity issue but imposes significant 
runtime onto this problem. After carefully conducted analyses and tests, a new 
formulation has been proposed to replace the previous age constraint: 
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where M is a number much larger than the average age of the physical asset population 
(an large M value of 10,000,000 is used in calculation). 
 
To understand this formulation, we can break this constraint down to two different 
scenarios: when Xij is 0 and when Xij is 1. This constraint is imposed to a risk minimization 
optimization program. Because the age metrics (Aij and Ai,j+1) are proportional to the risk 
measures, the minimization optimization will naturally force Aij and Ai,j+1 to the smallest 
possible value without violating this or any other constraints. 
 
When Xij = 0, meaning asset i will not be replaced in year j, the Xij * M term has no effect 
in this inequality. The optimization will tempt to minimize the age and setting the 
constraint to Aij + 1 = Ai,j+1 

 
When Xij = 1, meaning asset i will be replaced in year j, the Xij * M term becomes extremely 
large compared to the age metrics (Aij and Ai,j+1). In this case, the right-hand side terms 
no longer requires Ai,j+1 to hold a large value to become larger than Aij + 1. Due to 
minimization, Ai,j+1 will take on the smallest possible value, 0 (Age is set to be positive 
integers). This means that after the replacement of asset i in year j, the asset age will be 
reset to zero to reflect the state of the new asset i. 
 
This constraint adjustment reduces the runtime for small to medium datasets by a 
significant margin (Approx. 30 percent). The inequality utilizes the nature of the 
optimization process to simplify the mathematical formulation. 
 
Non-linear programming approach: concerns and obstacles 
 
The advantage of this Non-Linear Programming Approach is that it finds the optimal 
solution that minimizes the total system risk over the given horizon while staying within 
the budget constraints. 
 
The approach utilizes integer programming with two sets of decision variables, one set of 
them being integer decision variables, which has a very high mathematical complexity 
and can be very costly when analyzing large datasets. Though significant improvements 
were seen after the age constraint adjustment, the approach still has a very long run-time 
when processing large datasets. A 15,000 entry dataset would take more than 48 hours to 
execute. Because this approach can only process small datasets, due to limited data 
points, the sample results do not provide meaningful results. 
 
Although an optimal solution is ideal, it may be preferable to provide a slightly sub-
optimal solution that takes significantly less time to process. Given that is problem is 
defined based on a probabilistic concept, the optimal solution only outlines a replacement 
schedule given the likelihood of failures. The replacement schedule is subject to change 
in reality as it is derived based on a snapshot of the current system demographics. Thus, 
a close approximation of the optimal solution is sufficient enough in most scenarios given 
the circumstances. The Step-Wise Mathematical Programming Approach and the Sorting 
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Approach provide slightly sub-optimal solutions that process the problems with much 
shorter runtimes. 
 
Empirical results and quantitative testing on small datasets have shown that the 
difference in optimality and cost-efficiency between the Non-Linear Programming 
Approach and the Step-Wise Mathematical Programming is very minimal. 
 
Step-wise mathematical programming approach in application 
 
In comparison with the Non-Linear Programming Approach, the Step-Wise 
Mathematical Programming Approach saves a significant amount of runtime when 
processing medium size dataset (50 to 300 data entries). Though the approach works very 
well for medium size dataset, it still has runtime issues when processing large datasets 
due the mathematical complexity of integer programming. Thus, a Sorting Approach has 
been introduced to target the optimization process of large asset groups. The sorting 
approach is slightly suboptimal in terms of finding the best replacement schedule with 
the highest cost-efficiency. But empirical and quantitative test results have shown that 
the difference in cost-efficiency is very minimal when the dataset becomes very large. In 
the sample code provided in the Appendix, the algorithm takes advantage of R Studio’s 
built-in integer programming mechanism to further improve the algorithm’s 
performances. 
 
Step-wise mathematical programming approach results 
 
The Step-Wise Mathematical Programming Approach is a great approach when 
processing small to medium datasets. The Step-Wise Mathematical Program has shown 
that when dealing with assets with same asset type but with different subtypes, the look-
ahead parameter does not have too much impact on the optimization process as the assets 
with the same asset type tend to have similar risk growth (i.e. similar shape and scale). 
Because the differences in risk growth are reasonably small, sometimes programs with 
greater look-ahead parameters may under-perform compared to programs with smaller 
look-ahead parameters. 
 
It is sometimes ideal to only consider the current annual risk cost and disregard the long-
term effect of risk growths. To disregard the long-term effect of risk growths, set the look-
ahead parameter to a small positive integer value (e.g. 1 or 2). If the look-ahead parameter 
is set to 1, then during optimization, the program will provide a replacement schedule 
based on the current year’s annual risk only. If the look-ahead parameter is set to 2, then 
during optimization, the program will provide a replacement schedule based on the 
current year and next year’s annual risk. 
 
When the differences between the shape of each asset and the differences between the 
scale of each asset become significant, empirical and quantitative testing have shown that 
having considerations for the impact of risk growths could significantly benefit the 
company in the long-term. Please note that, due to limited access to Toronto Hydro’s real 
dataset (for confidentiality reasons), these empirical and quantitative analysis are 
performed on designed datasets that simulate assets with large differences in shape and 
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scale. The Step-Wise Approach test results of assets with large differences in shape and 
scale over 150 years have been shown in Figure 2. Each program has been given the same 
and constant annual budgets. The assets in the dataset used in testing has large 
differences in both shape and scale; the assets are, initially, at very young ages to 
emphasize the impact of large risk growths simulated in this example. 
 

 
 

As we can see in Figure 2, the replacement program with a look-ahead parameter of 1 
performs very well in the short-term, but begins to accumulate large risk costs in the long-
term. As assets begin to age, the impact of risk growths becomes significant, and the more 
long-term oriented programs (i.e. programs with a greater look-ahead parameter) begin 
to outperform the “short-sighted” programs. 
 
Please note that the look-ahead parameters require careful selection. Depending on asset 
demographics, each look-ahead parameter may perform differently. It is recommended 
to perform a similar quantitative test as shown in Figure 2, based on the quantitative 
results, select a look-ahead parameter that aligns with the company’s investment 
strategies. 
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Sorting approach in application 

 
The Sorting Approach is motivated by the need of reducing model’s mathematical 
complexity and shorten the program runtime. In the sample code provided in the 
Appendix, the algorithm takes advantage of R Studio’s built-in quick sorting mechanism 
to further improve the algorithm’s performances. The runtime has been significantly 
reduced as the sorting mechanism only takes a fraction of the amount of time to run an 
integer optimization. Most of the runtime of the Sorting Approach is contributed by the 
calculations of CumulativeRiskCost. 
 
Sorting approach results 
 
The results are very promising as the deviations between the Sorting Approach and the 
Step-Wise Mathematical Programming Approach (which should produce a more optimal 
result in theory due to its usage of integer programming optimization) are very small. 
 
The Sorting Approach is a great model to use when processing larger datasets. Similar 
with the Step-Wise Mathematical Programming Approach, the Sorting Approach has 
shown that when dealing with assets with same asset type but with different subtypes, the 
look-ahead parameter does not have too much impact on the optimization process as the 
assets with the same asset type tend to have similar risk growth (i.e. similar shape and 
scale). As we can see in Figure 2 and Figure 3 , the Sorting Approach results are very 
similar to the Step-Wise Approach results. It appears that the greater look-ahead 
parameter programs are likely to under-perform compared to smaller look-ahead 
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parameter programs in the short-term. Due to the small differences in risk growth, a 
short-term oriented approach appears to be more appropriate for such scenarios. 
 
Please note that the look-ahead parameters require careful selections. Depending on asset 
demographics, each look-ahead parameter may perform differently. It is recommended 
to perform a similar quantitative test as shown in Figure 3, based on the quantitative 
results, select a look-ahead parameter that aligns with the company’s investment 
strategies. 
 

 
 
Conclusion 
 
Toronto Hydro has been facing the problem of investment spiking when formulating 
investment plans. Assets of the same type often have similar useful-lives. Historically, 
large projects/initiatives have installed assets within a short period of time (or in a cyclical 
nature of a period of years), which can contribute to spikes in renewal expenditures in the 
future. Due to capital budget constraints, not all assets can be replaced at or before the 
optimal/expected replacement time, which further contributes to the spikes in renewal 
expenditures. Asset risk growths are also major concerns when developing investment 
plans. 
 
This report has provided three mathematical approaches to aid Toronto Hydro’s 
investment planning process, with a focus on smoothing out the investment spikes and 
reducing the impact of asset risk growths. 
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Though the Non-Linear Programming Approach provides an optimal replacement 
schedule for the investment smoothing problem while solving the asset risk growths 
problem within the investment horizon, the significant mathematical complexity of this 
approach makes the model difficult to use in real life settings. If time permits, we can use 
this approach to generate replacement schedules for small datasets. 
 
The Step-Wise Mathematical Programming Approach is a viable solution to solving the 
investment spiking issue in a small to medium-size asset population. It removes one set 
of decision variable used in the Non-Linear Programming Approach and introduces the 
look-ahead parameters. It not only provides an optimized replacement schedule that 
smooths out the annual budgets, it also emphasizes solving the asset risk growth issues. 
The downside of this approach is that it takes a long time to execute large datasets due to 
the built-in integer programming optimization process. 
 
The Sorting Approach is derived based on the foundation of the Step-Wise Mathematical 
Programming Approach. It utilizes the look-ahead parameters and the 
CumulativeRiskCost concept in the Step-Wise Mathematical Programming Approach. 
Instead of providing the replacement schedule through integer programming 
optimization, it utilizes sorting mechanisms to significantly reduce the program runtime. 
It is an ideal approach when optimizing investment plans with a very large asset 
population. 
 
Each approach has advantages and downside trade-offs. It is important for engineers and 
analysts to recognize these trade-offs and select the appropriate approach based on the 
asset demographics and investment goals. 
 
Future work 
 
For future steps, we will continue to coordinate with Toronto Hydro Corporation and test 
out all approaches on real datasets (current implementation tests were done on smaller 
sample datasets). 
 
The complete thesis work will be presented at the Centre for Maintenance Optimization 
and Reliability Engineering Progress Conference.  
 


